These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 15324194)

  • 21. Dynamics of counterpropagating pulses in photonic crystals: enhancement and suppression of stimulated emission processes.
    Centini M; D'Aguanno G; Scalora M; Bloemer MJ; Bowden CM; Sibilia C; Mattiucci N; Bertolotti M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036617. PubMed ID: 12689189
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Broadband slow light in one-dimensional logically combined photonic crystals.
    Alagappan G; Png CE
    Nanoscale; 2015 Jan; 7(4):1333-8. PubMed ID: 25492379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effective-medium theory for energy velocity in one-dimensional finite lossless photonic crystals.
    Torrese G; Taylor J; Hall TJ; Mégret P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066616. PubMed ID: 16907006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Density of states functions for photonic crystals.
    McPhedran RC; Botten LC; McOrist J; Asatryan AA; De Sterke CM; Nicorovici NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016609. PubMed ID: 14995738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spontaneous emission from radiative chiral nematic liquid crystals at the photonic band-gap edge: an investigation into the role of the density of photon states near resonance.
    Mavrogordatos TK; Morris SM; Wood SM; Coles HJ; Wilkinson TD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062504. PubMed ID: 23848702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies.
    Degirmenci E; Landais P
    Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical approximation for photonic array modes in one-dimensional photonic crystal devices.
    Smith E; Shteeman V; Hardy AA
    Appl Opt; 2013 Mar; 52(8):1743-51. PubMed ID: 23478780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectral element method for band structures of three-dimensional anisotropic photonic crystals.
    Luo M; Liu QH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056702. PubMed ID: 20365091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quasinormal-mode description of waves in one-dimensional photonic crystals.
    Settimi A; Severini S; Mattiucci N; Sibilia C; Centini M; D'Aguanno G; Bertolotti M; Scalora M; Bloemer M; Bowden CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026614. PubMed ID: 14525140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals.
    Johnson CM; Reece PJ; Conibeer GJ
    Opt Lett; 2011 Oct; 36(20):3990-2. PubMed ID: 22002362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Propagation and localization of electromagnetic waves in quasiperiodic serial loop structures.
    Aynaou H; El Boudouti EH; El Hassouani Y; Akjouj A; Djafari-Rouhani B; Vasseur J; Benomar A; Velasco VR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056601. PubMed ID: 16383765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Double Dirac cones in two-dimensional dielectric photonic crystals.
    Li Y; Mei J
    Opt Express; 2015 May; 23(9):12089-99. PubMed ID: 25969297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-dimensional treatment of the level shift and decay rate in photonic crystals.
    Fussell DP; McPhedran RC; Martijn de Sterke C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046605. PubMed ID: 16383552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photonic crystals as topological high-Q resonators.
    Merlin R; Young SM
    Opt Express; 2014 Jul; 22(15):18579-87. PubMed ID: 25089477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frequency-domain formulation of photonic crystals using sources and gain.
    Chiang PJ; Chang SW
    Opt Express; 2013 Jan; 21(2):1972-85. PubMed ID: 23389178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transverse magnetic defect modes in two-dimensional triangular-lattice photonic crystals.
    Stojić N; Glimm J; Deng Y; Haus JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056614. PubMed ID: 11736123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disappearances of uncoupled modes in two-dimensional photonic crystals due to anisotropies of liquid crystals.
    Takeda H; Yoshino K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056612. PubMed ID: 12786301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exciton polaritons in one-dimensional metal-semiconductor photonic crystals.
    Márquez-Islas R; Flores-Desirena B; Pérez-Rodríguez F
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6584-8. PubMed ID: 19205244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Excitation of gap solitons, soliton trains, and soliton sets in finite-sized two-dimensional photonic crystals.
    Xie P; Zhang ZQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036601. PubMed ID: 15089424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microassembly of semiconductor three-dimensional photonic crystals.
    Aoki K; Miyazaki HT; Hirayama H; Inoshita K; Baba T; Sakoda K; Shinya N; Aoyagi Y
    Nat Mater; 2003 Feb; 2(2):117-21. PubMed ID: 12612697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.