These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 15324195)

  • 1. Dynamic control by sinusoidal perturbation and by Gaussian noise of a system of two nonlinear oscillators: computation and experimental results.
    Cristescu CP; Stan C; Alexandroaei D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016613. PubMed ID: 15324195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of chaos by random noise in a system of two coupled perturbed van der Pol oscillators modeling an electrical discharge plasma.
    Cristescu CP; Stan C; Alexandroaei D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016602. PubMed ID: 12241495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states.
    Lee WS; Ott E; Antonsen TM
    Chaos; 2013 Sep; 23(3):033116. PubMed ID: 24089952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise-aided synchronization of coupled chaotic electrochemical oscillators.
    Kiss IZ; Hudson JL; Escalona J; Parmananda P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026210. PubMed ID: 15447568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbation parameters associated with nonlinear responses of the head at small amplitudes.
    Gurses S; Dhaher Y; Hain TC; Keshner EA
    Chaos; 2005 Jun; 15(2):23905. PubMed ID: 16035900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of common noise on phase synchronization in coupled chaotic oscillators.
    Park K; Lai YC; Krishnamoorthy S; Kandangath A
    Chaos; 2007 Mar; 17(1):013105. PubMed ID: 17411241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective long-time phase dynamics of limit-cycle oscillators driven by weak colored noise.
    Nakao H; Teramae JN; Goldobin DS; Kuramoto Y
    Chaos; 2010 Sep; 20(3):033126. PubMed ID: 20887066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of chaotic and sinusoidal vasomotion in the regulation of microvascular flow.
    Parthimos D; Edwards DH; Griffith TM
    Cardiovasc Res; 1996 Mar; 31(3):388-99. PubMed ID: 8681326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase space structure and chaotic scattering in near-integrable systems.
    Koch BP; Bruhn B
    Chaos; 1993 Oct; 3(4):443-457. PubMed ID: 12780051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization and quorum sensing in an ensemble of indirectly coupled chaotic oscillators.
    Li BW; Fu C; Zhang H; Wang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046207. PubMed ID: 23214663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaos suppression through asymmetric coupling.
    Bragard J; Vidal G; Mancini H; Mendoza C; Boccaletti S
    Chaos; 2007 Dec; 17(4):043107. PubMed ID: 18163771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplitude and phase effects on the synchronization of delay-coupled oscillators.
    D'Huys O; Vicente R; Danckaert J; Fischer I
    Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the modeling and nonlinear dynamics of autonomous Silva-Young type chaotic oscillators with flat power spectrum.
    Kengne J; Kenmogne F
    Chaos; 2014 Dec; 24(4):043134. PubMed ID: 25554054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bifurcation scenarios for bubbling transition.
    Zimin AV; Hunt BR; Ott E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016204. PubMed ID: 12636582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulated transitions between the self-trapped states of the nonlinear Schrödinger equation.
    Elyutin PV; Rogovenko AN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026610. PubMed ID: 11308604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Static and dynamic attractive-repulsive interactions in two coupled nonlinear oscillators.
    Dixit S; Shrimali MD
    Chaos; 2020 Mar; 30(3):033114. PubMed ID: 32237763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of nonlinear dynamic methods and perturbation methods for voice analysis.
    Zhang Y; Jiang JJ; Wallace SM; Zhou L
    J Acoust Soc Am; 2005 Oct; 118(4):2551-60. PubMed ID: 16266175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergent rhythms in coupled nonlinear oscillators due to dynamic interactions.
    Dixit S; Nag Chowdhury S; Prasad A; Ghosh D; Shrimali MD
    Chaos; 2021 Jan; 31(1):011105. PubMed ID: 33754786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhomogeneous stationary and oscillatory regimes in coupled chaotic oscillators.
    Liu W; Volkov E; Xiao J; Zou W; Zhan M; Yang J
    Chaos; 2012 Sep; 22(3):033144. PubMed ID: 23020483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental observation of a transition from amplitude to oscillation death in coupled oscillators.
    Banerjee T; Ghosh D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062902. PubMed ID: 25019846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.