BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 15324200)

  • 1. Possibility of constructing a multispeed Bhatnagar-Gross-Krook thermal model of the lattice Boltzmann method.
    Watari M; Tsutahara M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016703. PubMed ID: 15324200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit.
    Shi Y; Zhao TS; Guo ZL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066310. PubMed ID: 15697505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple-relaxation-time lattice-Boltzmann model for multiphase flow.
    McCracken ME; Abraham J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036701. PubMed ID: 15903627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multispeed entropic lattice Boltzmann model for thermal flows.
    Frapolli N; Chikatamarla SS; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043306. PubMed ID: 25375622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rayleigh-BĂ©nard simulation using the gas-kinetic Bhatnagar-Gross-Krook scheme in the incompressible limit.
    Xu K; Lui SH
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):464-70. PubMed ID: 11969784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explicit finite-difference lattice Boltzmann method for curvilinear coordinates.
    Guo Z; Zhao TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066709. PubMed ID: 16241382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible Navier-Stokes equations and convection-diffusion equations.
    Yang X; Shi B; Chai Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013309. PubMed ID: 25122412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy.
    Watari M; Tsutahara M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036306. PubMed ID: 12689164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations.
    Luo LS; Liao W; Chen X; Peng Y; Zhang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056710. PubMed ID: 21728696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comment on "Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method".
    Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):048301; discussion 048302. PubMed ID: 22181320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Velocity slip and temperature jump simulations by the three-dimensional thermal finite-difference lattice Boltzmann method.
    Watari M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066706. PubMed ID: 19658624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice Boltzmann method for linear oscillatory noncontinuum flows.
    Shi Y; Yap YW; Sader JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033305. PubMed ID: 24730965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regularized lattice Bhatnagar-Gross-Krook model for two- and three-dimensional cavity flow simulations.
    Montessori A; Falcucci G; Prestininzi P; La Rocca M; Succi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053317. PubMed ID: 25353924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Boltzmann method for incompressible flows with large pressure gradients.
    Shi Y; Zhao TS; Guo ZL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026704. PubMed ID: 16605480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.
    Hejranfar K; Hajihassanpour M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reply to "Comment on 'Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations'".
    Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):048701. PubMed ID: 23214711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-difference lattice-Boltzmann methods for binary fluids.
    Xu A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066706. PubMed ID: 16089910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoscopic Simulation of the (2 + 1)-Dimensional Wave Equation with Nonlinear Damping and Source Terms Using the Lattice Boltzmann BGK Model.
    Li D; Lai H; Shi B
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consistent lattice Boltzmann schemes for the Brinkman model of porous flow and infinite Chapman-Enskog expansion.
    Ginzburg I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066704. PubMed ID: 18643394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Uehling-Uhlenbeck Boltzmann-Bhatnagar-Gross-Krook hydrodynamics of quantum gases.
    Yang JY; Hung LH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056708. PubMed ID: 19518594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.