These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 15324210)

  • 21. Higher-order effects in rarefied channel flows.
    Struchtrup H; Torrilhon M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046301. PubMed ID: 18999520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. General continuum boundary conditions for miscible binary fluids from molecular dynamics simulations.
    Denniston C; Robbins MO
    J Chem Phys; 2006 Dec; 125(21):214102. PubMed ID: 17166010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boundary condition for lattice Boltzmann modeling of microscale gas flows with curved walls in the slip regime.
    Tao S; Guo Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043305. PubMed ID: 25974610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beyond the no-slip boundary condition.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046309. PubMed ID: 22181263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrodynamic slip boundary condition at chemically patterned surfaces: a continuum deduction from molecular dynamics.
    Qian T; Wang XP; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):022501. PubMed ID: 16196615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lattice Boltzmann models for nonequilibrium gas flows.
    Tang GH; Zhang YH; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046701. PubMed ID: 18517753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large variation in the boundary-condition slippage for a rarefied gas flowing between two surfaces.
    Laurent J; Drezet A; Sellier H; Chevrier J; Huant S
    Phys Rev Lett; 2011 Oct; 107(16):164501. PubMed ID: 22107390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Velocity slip and temperature jump simulations by the three-dimensional thermal finite-difference lattice Boltzmann method.
    Watari M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066706. PubMed ID: 19658624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling rarefied gas-solid surface interactions for Couette flow with different wall temperatures using an unsupervised machine learning technique.
    Mohammad Nejad S; Iype E; Nedea S; Frijns A; Smeulders D
    Phys Rev E; 2021 Jul; 104(1-2):015309. PubMed ID: 34412256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inverted velocity profile in the cylindrical Couette flow of a rarefied gas.
    Aoki K; Yoshida H; Nakanishi T; Garcia AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016302. PubMed ID: 12935241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Filter-matrix lattice Boltzmann model for microchannel gas flows.
    Zhuo C; Zhong C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053311. PubMed ID: 24329383
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonequilibrium molecular dynamics of the rheological and structural properties of linear and branched molecules. Simple shear and poiseuille flows; instabilities and slip.
    Castillo-Tejas J; Alvarado JF; González-Alatorre G; Luna-Bárcenas G; Sanchez IC; Macias-Salinas R; Manero O
    J Chem Phys; 2005 Aug; 123(5):054907. PubMed ID: 16108693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.
    Zheng W; Wang LP; Or D; Lazouskaya V; Jin Y
    Langmuir; 2012 Sep; 28(35):12753-61. PubMed ID: 22867425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the lattice Boltzmann Bhatnagar-Gross-Krook no-slip boundary condition: ways to improve accuracy and stability.
    Verschaeve JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036703. PubMed ID: 19905242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical derivation of slip boundary conditions for single-species gas and binary gas mixture.
    Zhang J; Luan P; Deng J; Tian P; Liang T
    Phys Rev E; 2021 Nov; 104(5-2):055103. PubMed ID: 34942694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new model for fluid velocity slip on a solid surface.
    Shu JJ; Teo JB; Chan WK
    Soft Matter; 2016 Oct; 12(40):8388-8397. PubMed ID: 27714378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows.
    Kim SH; Pitsch H; Boyd ID
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026704. PubMed ID: 18352145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.