These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 15324236)

  • 1. Slow-light six-wave mixing at low light intensities.
    Kang H; Hernandez G; Zhu Y
    Phys Rev Lett; 2004 Aug; 93(7):073601. PubMed ID: 15324236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows.
    Zhang Y; Brown AW; Xiao M
    Phys Rev Lett; 2007 Sep; 99(12):123603. PubMed ID: 17930503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switching from electromagnetically induced absorption grating to electromagnetically induced phase grating in a closed-loop atomic system.
    Vafafard A; Mahmoudi M
    Appl Opt; 2015 Dec; 54(36):10613-7. PubMed ID: 26837025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms.
    Li YQ; Xiao M
    Opt Lett; 1996 Jul; 21(14):1064-6. PubMed ID: 19876253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of large Kerr nonlinearity at low light intensities.
    Kang H; Zhu Y
    Phys Rev Lett; 2003 Aug; 91(9):093601. PubMed ID: 14525180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed four- and six-wave mixing in a coherently prepared atomic ensemble.
    Felinto D; Moretti D; de Oliveira RA; Tabosa JW
    Opt Lett; 2010 Dec; 35(23):3937-9. PubMed ID: 21124571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherence properties of amplified slow light by four-wave mixing.
    Hsiao YF; Tsai PJ; Lin CC; Chen YF; Yu IA; Chen YC
    Opt Lett; 2014 Jun; 39(12):3394-7. PubMed ID: 24978494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superluminal reflection and transmission of light pulses via resonant four-wave mixing in cesium vapor.
    Jiang Q; Zhang Y; Wang D; Ahrens S; Zhang J; Zhu S
    Opt Express; 2016 Oct; 24(21):24451-24459. PubMed ID: 27828173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative nonlinear grating sensitive to light intensity and photon correlation.
    Liu YM; Tian XD; Wang X; Yan D; Wu JH
    Opt Lett; 2016 Jan; 41(2):408-11. PubMed ID: 26766726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of interference between four-wave mixing and six-wave mixing.
    Zhang Y; Brown AW; Xiao M
    Opt Lett; 2007 May; 32(9):1120-2. PubMed ID: 17410255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating light pulses via dynamically controlled photonic band gap.
    André A; Lukin MD
    Phys Rev Lett; 2002 Sep; 89(14):143602. PubMed ID: 12366046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal and Spatial Interference between Four-Wave Mixing and Six-Wave Mixing Channels.
    Zhang Y; Khadka U; Anderson B; Xiao M
    Phys Rev Lett; 2009 Jan; 102(1):013601. PubMed ID: 19257191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensity-dependent effects on four-wave mixing based on electromagnetically induced transparency.
    Wang G; Cen L; Qu Y; Xue Y; Wu JH; Gao JY
    Opt Express; 2011 Oct; 19(22):21614-9. PubMed ID: 22109010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibiting the onset of the three-photon destructive interference in ultraslow propagation-enhanced four-wave mixing with dual induced transparency.
    Deng L; Payne MG
    Phys Rev Lett; 2003 Dec; 91(24):243902. PubMed ID: 14683121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-channel all-optical wavelength conversion switching by four-wave mixing.
    Wang G; Xue Y; Wu JH; Liu SS; Jiang Y; Kang ZH; Gao JY
    Opt Express; 2009 Dec; 17(25):23332-7. PubMed ID: 20052260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional infrared emission resulting from cascade population inversion and four-wave mixing in Rb vapor.
    Akulshin A; Budker D; McLean R
    Opt Lett; 2014 Feb; 39(4):845-8. PubMed ID: 24562222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves.
    Deng L; Kozuma M; Hagley EW; Payne MG
    Phys Rev Lett; 2002 Apr; 88(14):143902. PubMed ID: 11955149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient hyper-Raman scattering in resonant coherent media.
    Wu Y; Wen L; Zhu Y
    Opt Lett; 2003 Apr; 28(8):631-3. PubMed ID: 12703923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between six wave mixing photonic band gap signal and second-order nonlinear signal in electromagnetically induced grating.
    Wang Z; Gao M; Ullah Z; Zhang D; Chen H; Gao H; Zhang Y
    Opt Express; 2015 Sep; 23(19):25098-110. PubMed ID: 26406709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromagnetically induced grating based on the giant Kerr nonlinearity controlled by spontaneously generated coherence.
    Ba N; Wang L; Wu XY; Liu XJ; Wang HH; Cui CL; Li AJ
    Appl Opt; 2013 Jun; 52(18):4264-72. PubMed ID: 23842169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.