These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15324264)

  • 1. Mobile ambipolar domain in carbon-nanotube infrared emitters.
    Freitag M; Chen J; Tersoff J; Tsang JC; Fu Q; Liu J; Avouris P
    Phys Rev Lett; 2004 Aug; 93(7):076803. PubMed ID: 15324264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroluminescence from electrolyte-gated carbon nanotube field-effect transistors.
    Zaumseil J; Ho X; Guest JR; Wiederrecht GP; Rogers JA
    ACS Nano; 2009 Aug; 3(8):2225-34. PubMed ID: 19634895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced ambipolar charge injection with semiconducting polymer/carbon nanotube thin films for light-emitting transistors.
    Gwinner MC; Jakubka F; Gannott F; Sirringhaus H; Zaumseil J
    ACS Nano; 2012 Jan; 6(1):539-48. PubMed ID: 22142143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of unipolar single-walled carbon nanotube field effect transistors to ambipolar induced by polystyrene nanosphere assembly.
    Wei D; Zhang Y; Yang Y; Hasko DG; Chu D; Teo KB; Amaratunga GA; Milne WI
    ACS Nano; 2008 Dec; 2(12):2526-30. PubMed ID: 19206288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping charge transport by electroluminescence in chirality-selected carbon nanotube networks.
    Jakubka F; Backes C; Gannott F; Mundloch U; Hauke F; Hirsch A; Zaumseil J
    ACS Nano; 2013 Aug; 7(8):7428-35. PubMed ID: 23915032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically induced optical emission from a carbon nanotube FET.
    Misewich JA; Martel R; Avouris P; Tsang JC; Heinze S; Tersoff J
    Science; 2003 May; 300(5620):783-6. PubMed ID: 12730598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minority Currents in n-Doped Organic Transistors.
    Al-Shadeedi A; Liu S; Keum CM; Kasemann D; Hoßbach C; Bartha J; Bunge SD; Lüssem B
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32432-32439. PubMed ID: 27797170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors.
    Freitag M; Tsang JC; Bol A; Yuan D; Liu J; Avouris P
    Nano Lett; 2007 Jul; 7(7):2037-42. PubMed ID: 17559288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outlook and emerging semiconducting materials for ambipolar transistors.
    Bisri SZ; Piliego C; Gao J; Loi MA
    Adv Mater; 2014 Feb; 26(8):1176-99. PubMed ID: 24591008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique carbon-nanotube field-effect transistors with asymmetric source and drain contacts.
    Li H; Zhang Q; Marzari N
    Nano Lett; 2008 Jan; 8(1):64-8. PubMed ID: 18069866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ambipolar phosphorene field effect transistor.
    Das S; Demarteau M; Roelofs A
    ACS Nano; 2014 Nov; 8(11):11730-8. PubMed ID: 25329532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact Resistance in Ambipolar Organic Field-Effect Transistors Measured by Confocal Photoluminescence Electro-Modulation Microscopy.
    Koopman WWA; Natali M; Bettini C; Melucci M; Muccini M; Toffanin S
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35411-35419. PubMed ID: 30230308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport in carbon nanotube field-effect transistors tuned using low energy electron beam exposure.
    Chan J; Burke B; Cabral M; Hu C; Campbell J; Harriott L; Williams KA
    J Phys Condens Matter; 2010 Aug; 22(33):334212. PubMed ID: 21386502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilizing carbon nanotube electrodes to improve charge injection and transport in bis(trifluoromethyl)-dimethyl-rubrene ambipolar single crystal transistors.
    Xie W; Prabhumirashi PL; Nakayama Y; McGarry KA; Geier ML; Uragami Y; Mase K; Douglas CJ; Ishii H; Hersam MC; Frisbie CD
    ACS Nano; 2013 Nov; 7(11):10245-56. PubMed ID: 24175573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically excited, localized infrared emission from single carbon nanotubes.
    Freitag M; Tsang JC; Kirtley J; Carlsen A; Chen J; Troeman A; Hilgenkamp H; Avouris P
    Nano Lett; 2006 Jul; 6(7):1425-33. PubMed ID: 16834423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large signal operation of small band-gap carbon nanotube-based ambipolar transistor: a high-performance frequency doubler.
    Wang Z; Ding L; Pei T; Zhang Z; Wang S; Yu T; Ye X; Peng F; Li Y; Peng LM
    Nano Lett; 2010 Sep; 10(9):3648-55. PubMed ID: 20677775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing ambipolar carrier transport of black phosphorus field-effect transistors with Ni-P alloy contacts.
    Park H; Kim J
    Phys Chem Chem Phys; 2018 Sep; 20(35):22439-22444. PubMed ID: 30062335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making contacts to n-type organic transistors using carbon nanotube arrays.
    Cicoira F; Aguirre CM; Martel R
    ACS Nano; 2011 Jan; 5(1):283-90. PubMed ID: 21141978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hot electron field emission via individually transistor-ballasted carbon nanotube arrays.
    Li C; Zhang Y; Cole MT; Shivareddy SG; Barnard JS; Lei W; Wang B; Pribat D; Amaratunga GA; Milne WI
    ACS Nano; 2012 Apr; 6(4):3236-42. PubMed ID: 22394307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A measurement technique for circumventing hysteresis and conductance drift in carbon nanotube field-effect transistors.
    Tunnell A; Ballarotto V; Cumings J
    Nanotechnology; 2014 Jan; 25(4):045705. PubMed ID: 24394672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.