These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Minority Currents in n-Doped Organic Transistors. Al-Shadeedi A; Liu S; Keum CM; Kasemann D; Hoßbach C; Bartha J; Bunge SD; Lüssem B ACS Appl Mater Interfaces; 2016 Nov; 8(47):32432-32439. PubMed ID: 27797170 [TBL] [Abstract][Full Text] [Related]
8. Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors. Freitag M; Tsang JC; Bol A; Yuan D; Liu J; Avouris P Nano Lett; 2007 Jul; 7(7):2037-42. PubMed ID: 17559288 [TBL] [Abstract][Full Text] [Related]
9. Outlook and emerging semiconducting materials for ambipolar transistors. Bisri SZ; Piliego C; Gao J; Loi MA Adv Mater; 2014 Feb; 26(8):1176-99. PubMed ID: 24591008 [TBL] [Abstract][Full Text] [Related]
10. Unique carbon-nanotube field-effect transistors with asymmetric source and drain contacts. Li H; Zhang Q; Marzari N Nano Lett; 2008 Jan; 8(1):64-8. PubMed ID: 18069866 [TBL] [Abstract][Full Text] [Related]
11. Ambipolar phosphorene field effect transistor. Das S; Demarteau M; Roelofs A ACS Nano; 2014 Nov; 8(11):11730-8. PubMed ID: 25329532 [TBL] [Abstract][Full Text] [Related]
12. Contact Resistance in Ambipolar Organic Field-Effect Transistors Measured by Confocal Photoluminescence Electro-Modulation Microscopy. Koopman WWA; Natali M; Bettini C; Melucci M; Muccini M; Toffanin S ACS Appl Mater Interfaces; 2018 Oct; 10(41):35411-35419. PubMed ID: 30230308 [TBL] [Abstract][Full Text] [Related]
13. Transport in carbon nanotube field-effect transistors tuned using low energy electron beam exposure. Chan J; Burke B; Cabral M; Hu C; Campbell J; Harriott L; Williams KA J Phys Condens Matter; 2010 Aug; 22(33):334212. PubMed ID: 21386502 [TBL] [Abstract][Full Text] [Related]
14. Utilizing carbon nanotube electrodes to improve charge injection and transport in bis(trifluoromethyl)-dimethyl-rubrene ambipolar single crystal transistors. Xie W; Prabhumirashi PL; Nakayama Y; McGarry KA; Geier ML; Uragami Y; Mase K; Douglas CJ; Ishii H; Hersam MC; Frisbie CD ACS Nano; 2013 Nov; 7(11):10245-56. PubMed ID: 24175573 [TBL] [Abstract][Full Text] [Related]
15. Electrically excited, localized infrared emission from single carbon nanotubes. Freitag M; Tsang JC; Kirtley J; Carlsen A; Chen J; Troeman A; Hilgenkamp H; Avouris P Nano Lett; 2006 Jul; 6(7):1425-33. PubMed ID: 16834423 [TBL] [Abstract][Full Text] [Related]
16. Large signal operation of small band-gap carbon nanotube-based ambipolar transistor: a high-performance frequency doubler. Wang Z; Ding L; Pei T; Zhang Z; Wang S; Yu T; Ye X; Peng F; Li Y; Peng LM Nano Lett; 2010 Sep; 10(9):3648-55. PubMed ID: 20677775 [TBL] [Abstract][Full Text] [Related]
17. Enhancing ambipolar carrier transport of black phosphorus field-effect transistors with Ni-P alloy contacts. Park H; Kim J Phys Chem Chem Phys; 2018 Sep; 20(35):22439-22444. PubMed ID: 30062335 [TBL] [Abstract][Full Text] [Related]
18. Making contacts to n-type organic transistors using carbon nanotube arrays. Cicoira F; Aguirre CM; Martel R ACS Nano; 2011 Jan; 5(1):283-90. PubMed ID: 21141978 [TBL] [Abstract][Full Text] [Related]
19. Hot electron field emission via individually transistor-ballasted carbon nanotube arrays. Li C; Zhang Y; Cole MT; Shivareddy SG; Barnard JS; Lei W; Wang B; Pribat D; Amaratunga GA; Milne WI ACS Nano; 2012 Apr; 6(4):3236-42. PubMed ID: 22394307 [TBL] [Abstract][Full Text] [Related]
20. A measurement technique for circumventing hysteresis and conductance drift in carbon nanotube field-effect transistors. Tunnell A; Ballarotto V; Cumings J Nanotechnology; 2014 Jan; 25(4):045705. PubMed ID: 24394672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]