These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 15324305)

  • 41. Crystal structure of TTHA0252 from Thermus thermophilus HB8, a RNA degradation protein of the metallo-beta-lactamase superfamily.
    Ishikawa H; Nakagawa N; Kuramitsu S; Masui R
    J Biochem; 2006 Oct; 140(4):535-42. PubMed ID: 16945939
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The binding of iron and zinc to glyoxalase II occurs exclusively as di-metal centers and is unique within the metallo-beta-lactamase family.
    Wenzel NF; Carenbauer AL; Pfiester MP; Schilling O; Meyer-Klaucke W; Makaroff CA; Crowder MW
    J Biol Inorg Chem; 2004 Jun; 9(4):429-38. PubMed ID: 15067523
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biochemical characterization of the FEZ-1 metallo-beta-lactamase of Legionella gormanii ATCC 33297T produced in Escherichia coli.
    Mercuri PS; Bouillenne F; Boschi L; Lamotte-Brasseur J; Amicosante G; Devreese B; van Beeumen J; Frère JM; Rossolini GM; Galleni M
    Antimicrob Agents Chemother; 2001 Apr; 45(4):1254-62. PubMed ID: 11257043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular architecture of the Mn2+-dependent lactonase UlaG reveals an RNase-like metallo-beta-lactamase fold and a novel quaternary structure.
    Garces F; Fernández FJ; Montellà C; Penya-Soler E; Prohens R; Aguilar J; Baldomà L; Coll M; Badia J; Vega MC
    J Mol Biol; 2010 May; 398(5):715-29. PubMed ID: 20359483
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem.
    Garau G; Bebrone C; Anne C; Galleni M; Frère JM; Dideberg O
    J Mol Biol; 2005 Jan; 345(4):785-95. PubMed ID: 15588826
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme.
    Fabiane SM; Sohi MK; Wan T; Payne DJ; Bateson JH; Mitchell T; Sutton BJ
    Biochemistry; 1998 Sep; 37(36):12404-11. PubMed ID: 9730812
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metallo-beta-lactamases: two binding sites for one catalytic metal ion?
    Heinz U; Adolph HW
    Cell Mol Life Sci; 2004 Nov; 61(22):2827-39. PubMed ID: 15558212
    [TBL] [Abstract][Full Text] [Related]  

  • 48. X-ray absorption spectroscopy of metal site speciation in the metallo-β-lactamase BcII from Bacillus cereus.
    Breece RM; Llarrull LI; Tioni MF; Vila AJ; Tierney DL
    J Inorg Biochem; 2012 Jun; 111():182-6. PubMed ID: 22381913
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of basic amino acid residues important for citrate binding by the periplasmic receptor domain of the sensor kinase CitA.
    Gerharz T; Reinelt S; Kaspar S; Scapozza L; Bott M
    Biochemistry; 2003 May; 42(19):5917-24. PubMed ID: 12741850
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Broad antibiotic resistance profile of the subclass B3 metallo-β-lactamase GOB-1, a di-zinc enzyme.
    Horsfall LE; Izougarhane Y; Lassaux P; Selevsek N; Liénard BM; Poirel L; Kupper MB; Hoffmann KM; Frère JM; Galleni M; Bebrone C
    FEBS J; 2011 Apr; 278(8):1252-63. PubMed ID: 21299838
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Binding of oxygen and carbon monoxide to a heme-regulated phosphodiesterase from Escherichia coli. Kinetics and infrared spectra of the full-length wild-type enzyme, isolated PAS domain, and Met-95 mutants.
    Taguchi S; Matsui T; Igarashi J; Sasakura Y; Araki Y; Ito O; Sugiyama S; Sagami I; Shimizu T
    J Biol Chem; 2004 Jan; 279(5):3340-7. PubMed ID: 14612459
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis.
    Li Z; Rasmussen BA; Herzberg O
    Protein Sci; 1999 Jan; 8(1):249-52. PubMed ID: 10210203
    [TBL] [Abstract][Full Text] [Related]  

  • 53. X-ray absorption spectroscopy of the zinc-binding sites in the class B2 metallo-beta-lactamase ImiS from Aeromonas veronii bv. sobria.
    Costello AL; Sharma NP; Yang KW; Crowder MW; Tierney DL
    Biochemistry; 2006 Nov; 45(45):13650-8. PubMed ID: 17087519
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanistic Insight from Calorimetric Measurements of the Assembly of the Binuclear Metal Active Site of Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes.
    Pedroso MM; Ely F; Carpenter MC; Mitić N; Gahan LR; Ollis DL; Wilcox DE; Schenk G
    Biochemistry; 2017 Jul; 56(26):3328-3336. PubMed ID: 28562023
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enzyme deactivation due to metal-ion dissociation during turnover of the cobalt-beta-lactamase catalyzed hydrolysis of beta-lactams.
    Badarau A; Page MI
    Biochemistry; 2006 Sep; 45(36):11012-20. PubMed ID: 16953588
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unusual cyanide bindings to a heme-regulated phosphodiesterase from Escherichia coli: effect of Met95 mutations.
    Watanabe M; Matsui T; Sasakura Y; Sagami I; Shimizu T
    Biochem Biophys Res Commun; 2002 Nov; 299(2):169-72. PubMed ID: 12437964
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Crystal structures of the cadmium- and mercury-substituted metallo-beta-lactamase from Bacteroides fragilis.
    Concha NO; Rasmussen BA; Bush K; Herzberg O
    Protein Sci; 1997 Dec; 6(12):2671-6. PubMed ID: 9416622
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metal content and localization during turnover in B. cereus metallo-beta-lactamase.
    Llarrull LI; Tioni MF; Vila AJ
    J Am Chem Soc; 2008 Nov; 130(47):15842-51. PubMed ID: 18980306
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of the inhibitor-resistant M69V substitution on the structures and populations of trans-enamine beta-lactamase intermediates.
    Totir MA; Padayatti PS; Helfand MS; Carey MP; Bonomo RA; Carey PR; van den Akker F
    Biochemistry; 2006 Oct; 45(39):11895-904. PubMed ID: 17002290
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metal binding activity of the Escherichia coli hydrogenase maturation factor HypB.
    Leach MR; Sandal S; Sun H; Zamble DB
    Biochemistry; 2005 Sep; 44(36):12229-38. PubMed ID: 16142921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.