These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15324478)

  • 21. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of protein drugs: III. In vivo oral absorption study.
    Rao SV; Yajurvedi K; Shao J
    Int J Pharm; 2008 Oct; 362(1-2):16-9. PubMed ID: 18650037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intestinal patches with an immobilized solid-in-oil formulation for oral protein delivery.
    Toorisaka E; Watanabe K; Ono H; Hirata M; Kamiya N; Goto M
    Acta Biomater; 2012 Feb; 8(2):653-8. PubMed ID: 21982846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery.
    Mundargi RC; Rangaswamy V; Aminabhavi TM
    J Microencapsul; 2011; 28(5):384-94. PubMed ID: 21736523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid spray formulations of xibornol by using self-microemulsifying drug delivery systems.
    Cirri M; Mura P; Mora PC
    Int J Pharm; 2007 Aug; 340(1-2):84-91. PubMed ID: 17531411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipid-based formulations to enhance oral bioavailability of the poorly water-soluble drug anethol trithione: effects of lipid composition and formulation.
    Han SF; Yao TT; Zhang XX; Gan L; Zhu C; Yu HZ; Gan Y
    Int J Pharm; 2009 Sep; 379(1):18-24. PubMed ID: 19508887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems.
    Cui J; Yu B; Zhao Y; Zhu W; Li H; Lou H; Zhai G
    Int J Pharm; 2009 Apr; 371(1-2):148-55. PubMed ID: 19124065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An enteric-coated dry emulsion formulation for oral insulin delivery.
    Toorisaka E; Hashida M; Kamiya N; Ono H; Kokazu Y; Goto M
    J Control Release; 2005 Sep; 107(1):91-6. PubMed ID: 16039746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aminated gelatin microspheres as a nasal delivery system for peptide drugs: evaluation of in vitro release and in vivo insulin absorption in rats.
    Wang J; Tabata Y; Morimoto K
    J Control Release; 2006 Jun; 113(1):31-7. PubMed ID: 16707188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulmonary delivery of insulin by liposomal carriers.
    Huang YY; Wang CH
    J Control Release; 2006 Jun; 113(1):9-14. PubMed ID: 16730838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery.
    Lin YH; Mi FL; Chen CT; Chang WC; Peng SF; Liang HF; Sung HW
    Biomacromolecules; 2007 Jan; 8(1):146-52. PubMed ID: 17206800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gold nanoparticles as carriers for efficient transmucosal insulin delivery.
    Joshi HM; Bhumkar DR; Joshi K; Pokharkar V; Sastry M
    Langmuir; 2006 Jan; 22(1):300-5. PubMed ID: 16378435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a Gas Empowered Drug Delivery system for peptide delivery in the small intestine.
    Sadeghi AM; Avadi MR; Ejtemaimehr Sh; Abashzadeh Sh; Partoazar A; Dorkoosh F; Faghihi M; Rafiee-Tehrani M; Junginger HE
    J Control Release; 2009 Feb; 134(1):11-7. PubMed ID: 19014985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats.
    Damgé C; Maincent P; Ubrich N
    J Control Release; 2007 Feb; 117(2):163-70. PubMed ID: 17141909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin.
    Morçöl T; Nagappan P; Nerenbaum L; Mitchell A; Bell SJ
    Int J Pharm; 2004 Jun; 277(1-2):91-7. PubMed ID: 15158972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oral delivery of macromolecules using intestinal patches: applications for insulin delivery.
    Whitehead K; Shen Z; Mitragotri S
    J Control Release; 2004 Jul; 98(1):37-45. PubMed ID: 15245887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption.
    Rekha MR; Sharma CP
    J Control Release; 2009 Apr; 135(2):144-51. PubMed ID: 19331862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam.
    Prabhu S; Ortega M; Ma C
    Int J Pharm; 2005 Sep; 301(1-2):209-16. PubMed ID: 16046087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insulin-induced immunohistochemical and morphological changes in pancreatic beta-cells of streptozotocin-treated diabetic rats.
    Adewole SO; Ojewole JA
    Methods Find Exp Clin Pharmacol; 2007 Sep; 29(7):447-55. PubMed ID: 17982509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats.
    Ma Z; Lim TM; Lim LY
    Int J Pharm; 2005 Apr; 293(1-2):271-80. PubMed ID: 15778065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and bioavailability assessment of ramipril nanoemulsion formulation.
    Shafiq S; Shakeel F; Talegaonkar S; Ahmad FJ; Khar RK; Ali M
    Eur J Pharm Biopharm; 2007 May; 66(2):227-43. PubMed ID: 17127045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.