These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 15325174)
1. Screening the leaching tendency of pesticides applied in the Amu Darya Basin (Uzbekistan). Papa E; Castiglioni S; Gramatica P; Nikolayenko V; Kayumov O; Calamari D Water Res; 2004 Sep; 38(16):3485-94. PubMed ID: 15325174 [TBL] [Abstract][Full Text] [Related]
2. The potential of pesticides to contaminate the groundwater resources of the Axios river basin in Macedonia, Northern Greece. Part I. Monitoring study in the north part of the basin. Papadopoulou-Mourkidou E; Karpouzas DG; Patsias J; Kotopoulou A; Milothridou A; Kintzikoglou K; Vlachou P Sci Total Environ; 2004 Apr; 321(1-3):127-46. PubMed ID: 15050391 [TBL] [Abstract][Full Text] [Related]
3. The potential of pesticides to contaminate the groundwater resources of the Axios river basin. Part II. Monitoring study in the south part of the basin. Papadopoulou-Mourkidou E; Karpouzas DG; Patsias J; Kotopoulou A; Milothridou A; Kintzikoglou K; Vlachou P Sci Total Environ; 2004 Apr; 321(1-3):147-64. PubMed ID: 15050392 [TBL] [Abstract][Full Text] [Related]
4. Spatial and seasonal variations in the water quality of the Amu Darya River (Central Asia). Crosa G; Froebrich J; Nikolayenko V; Stefani F; Galli P; Calamari D Water Res; 2006 Jun; 40(11):2237-45. PubMed ID: 16714044 [TBL] [Abstract][Full Text] [Related]
5. Water security in Uzbekistan: implication of return waters on the Amu Darya water quality. Crosa G; Stefani F; Bianchi C; Fumagalli A Environ Sci Pollut Res Int; 2006 Jan; 13(1):37-42. PubMed ID: 16417130 [TBL] [Abstract][Full Text] [Related]
6. Development of a geographical information system for pesticide assessment on an Ecuadorian watershed. Matamoros DE; van Griensven A; van Biesen L; Vanrolleghem PA Water Sci Technol; 2005; 52(12):259-65. PubMed ID: 16477994 [TBL] [Abstract][Full Text] [Related]
7. Selecting analytical target pesticides in monitoring: Sensitivity analysis and scoring. Tani K; Matsui Y; Iwao K; Kamata M; Matsushita T Water Res; 2012 Mar; 46(3):741-9. PubMed ID: 22154284 [TBL] [Abstract][Full Text] [Related]
8. A screening tool for vulnerability assessment of pesticide leaching to groundwater for the islands of Hawaii, USA. Stenemo F; Ray C; Yost R; Matsuda S Pest Manag Sci; 2007 Apr; 63(4):404-11. PubMed ID: 17315270 [TBL] [Abstract][Full Text] [Related]
9. Effect of pesticide fate parameters and their uncertainty on the selection of 'worst-case' scenarios of pesticide leaching to groundwater. Vanderborght J; Tiktak A; Boesten JJ; Vereecken H Pest Manag Sci; 2011 Mar; 67(3):294-306. PubMed ID: 21308955 [TBL] [Abstract][Full Text] [Related]
10. Runoff characteristics of particulate pesticides in a river from paddy fields. Inoue T; Ebise S; Numabe A; Nagafuchi O; Matsui Y Water Sci Technol; 2002; 45(9):121-6. PubMed ID: 12079093 [TBL] [Abstract][Full Text] [Related]
11. A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. von der Ohe PC; Dulio V; Slobodnik J; De Deckere E; Kühne R; Ebert RU; Ginebreda A; De Cooman W; Schüürmann G; Brack W Sci Total Environ; 2011 May; 409(11):2064-77. PubMed ID: 21414651 [TBL] [Abstract][Full Text] [Related]
12. Scenario-based simulation of runoff-related pesticide entries into small streams on a landscape level. Probst M; Berenzen N; Lentzen-Godding A; Schulz R Ecotoxicol Environ Saf; 2005 Oct; 62(2):145-59. PubMed ID: 15953635 [TBL] [Abstract][Full Text] [Related]
13. Monitoring ground water for pesticides in the U.S.A. Cohen SZ; Eiden C; Lorber MN Schriftenr Ver Wasser Boden Lufthyg; 1987; 68():265-95. PubMed ID: 3589541 [TBL] [Abstract][Full Text] [Related]
14. A globally applicable location-specific screening model for assessing the relative risk of pesticide leaching. Whelan MJ; Davenport EJ; Smith BG Sci Total Environ; 2007 May; 377(2-3):192-206. PubMed ID: 17391735 [TBL] [Abstract][Full Text] [Related]
15. An appraisal of methods for measurement of pesticide transformation in the groundwater zone. Leistra M; Smelt JH Pest Manag Sci; 2001 Apr; 57(4):333-40. PubMed ID: 11455812 [TBL] [Abstract][Full Text] [Related]
16. Runoff characteristics of pesticides from paddy fields and reduction of risk to the aquatic environment. Ebise S; Inoue T Water Sci Technol; 2002; 45(9):127-31. PubMed ID: 12079094 [TBL] [Abstract][Full Text] [Related]
17. Environmental and human risk hierarchy of pesticides: A prioritization method, based on monitoring, hazard assessment and environmental fate. Tsaboula A; Papadakis EN; Vryzas Z; Kotopoulou A; Kintzikoglou K; Papadopoulou-Mourkidou E Environ Int; 2016 May; 91():78-93. PubMed ID: 26915710 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of HCH isomers and metabolites in soils, leachates, river water and sediments of a highly contaminated area. Concha-Graña E; Turnes-Carou MI; Muniategui-Lorenzo S; López-Mahía P; Prada-Rodríguez D; Fernández-Fernández E Chemosphere; 2006 Jul; 64(4):588-95. PubMed ID: 16403559 [TBL] [Abstract][Full Text] [Related]
19. Assessing exposure to transformation products of soil-applied organic contaminants in surface water: comparison of model predictions and field data. Kern S; Singer H; Hollender J; Schwarzenbach RP; Fenner K Environ Sci Technol; 2011 Apr; 45(7):2833-41. PubMed ID: 21370857 [TBL] [Abstract][Full Text] [Related]
20. [Results and trends in the analysis of plant pesticides and similar chemicals and their metabolites in soil and drinking water]. Weber W Schriftenr Ver Wasser Boden Lufthyg; 1987; 68():109-41. PubMed ID: 3589533 [No Abstract] [Full Text] [Related] [Next] [New Search]