BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15325254)

  • 1. Over-representation of exonic splicing enhancers in human intronless genes suggests multiple functions in mRNA processing.
    Pozzoli U; Riva L; Menozzi G; Cagliani R; Comi GP; Bresolin N; Giorda R; Sironi M
    Biochem Biophys Res Commun; 2004 Sep; 322(2):470-6. PubMed ID: 15325254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The strength of the HIV-1 3' splice sites affects Rev function.
    Kammler S; Otte M; Hauber I; Kjems J; Hauber J; Schaal H
    Retrovirology; 2006 Dec; 3():89. PubMed ID: 17144911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silencer elements as possible inhibitors of pseudoexon splicing.
    Sironi M; Menozzi G; Riva L; Cagliani R; Comi GP; Bresolin N; Giorda R; Pozzoli U
    Nucleic Acids Res; 2004; 32(5):1783-91. PubMed ID: 15034146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive identification of exonic splicing enhancers in human genes.
    Fairbrother WG; Yeh RF; Sharp PA; Burge CB
    Science; 2002 Aug; 297(5583):1007-13. PubMed ID: 12114529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep intronic mutation in FGB creates a consensus exonic splicing enhancer motif that results in afibrinogenemia caused by aberrant mRNA splicing, which can be corrected in vitro with antisense oligonucleotide treatment.
    Davis RL; Homer VM; George PM; Brennan SO
    Hum Mutat; 2009 Feb; 30(2):221-7. PubMed ID: 18853456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of exonic splicing enhancer elements in human genes.
    Wu Y; Zhang Y; Zhang J
    Genomics; 2005 Sep; 86(3):329-36. PubMed ID: 16005179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of exonic splicing enhancer elements is the principal cause of exon skipping associated with seven nonsense or missense alleles of NF1.
    Zatkova A; Messiaen L; Vandenbroucke I; Wieser R; Fonatsch C; Krainer AR; Wimmer K
    Hum Mutat; 2004 Dec; 24(6):491-501. PubMed ID: 15523642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intron splicing suppresses RNA silencing in Arabidopsis.
    Christie M; Croft LJ; Carroll BJ
    Plant J; 2011 Oct; 68(1):159-67. PubMed ID: 21689169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in sequence and organization of splicing regulatory elements in vertebrate genes.
    Yeo G; Hoon S; Venkatesh B; Burge CB
    Proc Natl Acad Sci U S A; 2004 Nov; 101(44):15700-5. PubMed ID: 15505203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs.
    Wu X; Hurst LD
    Mol Biol Evol; 2015 Jul; 32(7):1847-61. PubMed ID: 25771198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational control of intron splicing in eukaryotes.
    Jaillon O; Bouhouche K; Gout JF; Aury JM; Noel B; Saudemont B; Nowacki M; Serrano V; Porcel BM; Ségurens B; Le Mouël A; Lepère G; Schächter V; Bétermier M; Cohen J; Wincker P; Sperling L; Duret L; Meyer E
    Nature; 2008 Jan; 451(7176):359-62. PubMed ID: 18202663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of intron-containing and intron-lacking human genes elucidates putative exonic splicing enhancers.
    Fedorov A; Saxonov S; Fedorova L; Daizadeh I
    Nucleic Acids Res; 2001 Apr; 29(7):1464-9. PubMed ID: 11266547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purifying Selection on Exonic Splice Enhancers in Intronless Genes.
    Savisaar R; Hurst LD
    Mol Biol Evol; 2016 Jun; 33(6):1396-418. PubMed ID: 26802218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A strong exonic splicing enhancer in dystrophin exon 19 achieve proper splicing without an upstream polypyrimidine tract.
    Habara Y; Doshita M; Hirozawa S; Yokono Y; Yagi M; Takeshima Y; Matsuo M
    J Biochem; 2008 Mar; 143(3):303-10. PubMed ID: 18039686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic identification and analysis of exonic splicing silencers.
    Wang Z; Rolish ME; Yeo G; Tung V; Mawson M; Burge CB
    Cell; 2004 Dec; 119(6):831-45. PubMed ID: 15607979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements.
    Lareau LF; Inada M; Green RE; Wengrod JC; Brenner SE
    Nature; 2007 Apr; 446(7138):926-9. PubMed ID: 17361132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AluGene: a database of Alu elements incorporated within protein-coding genes.
    Dagan T; Sorek R; Sharon E; Ast G; Graur D
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D489-92. PubMed ID: 14681464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in the Exon-Intron Database (EID).
    Shepelev V; Fedorov A
    Brief Bioinform; 2006 Jun; 7(2):178-85. PubMed ID: 16772261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of purine-rich exonic splicing enhancers in nuclear retention of pre-mRNAs.
    Taniguchi I; Masuyama K; Ohno M
    Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13684-9. PubMed ID: 17699631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identical sequence patterns in the ends of exons and introns of human protein-coding genes.
    Tavares R; Renaud G; Oliveira PS; Ferreira CG; Dias-Neto E; Passetti F
    Comput Biol Chem; 2012 Feb; 36():55-61. PubMed ID: 22301201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.