BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 15325376)

  • 1. Systematic latency variation of the auditory evoked M100: from average to single-trial data.
    Salajegheh A; Link A; Elster C; Burghoff M; Sander T; Trahms L; Poeppel D
    Neuroimage; 2004 Sep; 23(1):288-95. PubMed ID: 15325376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient brain responses predict the temporal dynamics of sound detection in humans.
    Mäkinen V; May P; Tiitinen H
    Neuroimage; 2004 Feb; 21(2):701-6. PubMed ID: 14980572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Latency analysis of single auditory evoked M100 responses by spatio-temporal filtering.
    Wübbeler G; Link A; Burghoff M; Trahms L; Elster C
    Phys Med Biol; 2007 Aug; 52(15):4383-92. PubMed ID: 17634639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetoencephalography for research of auditory cortex.
    Poch-Broto J; Bhathal B; Iglesias MC; Santiuste M; Fernández A; Ortiz T; Gil-Loyzaga P
    Acta Otolaryngol; 2008 May; 128(5):547-50. PubMed ID: 18421609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.
    Hertrich I; Mathiak K; Lutzenberger W; Ackermann H
    Neuropsychologia; 2004; 42(13):1814-26. PubMed ID: 15351630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromagnetic evaluation of binaural unmasking.
    Sasaki T; Kawase T; Nakasato N; Kanno A; Ogura M; Tominaga T; Kobayashi T
    Neuroimage; 2005 Apr; 25(3):684-9. PubMed ID: 15808969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Latency variation of auditory N1m responses to vocal and nonvocal sounds.
    Mizuochi T; Yumoto M; Karino S; Itoh K; Yamasoba T
    Neuroreport; 2007 Dec; 18(18):1945-9. PubMed ID: 18007192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for dissociation of spatial and nonspatial auditory information processing.
    Anourova I; Nikouline VV; Ilmoniemi RJ; Hotta J; Aronen HJ; Carlson S
    Neuroimage; 2001 Dec; 14(6):1268-77. PubMed ID: 11707083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of stimulus properties, complexity, and contingency on the stability and variability of ongoing and evoked activity in human auditory cortex.
    Ioannides AA; Taylor JG; Liu LC; Gross J; Müller-Gärtner HW
    Neuroimage; 1998 Aug; 8(2):149-62. PubMed ID: 9740758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gamma-band activity dissociates between matching and nonmatching stimulus pairs in an auditory delayed matching-to-sample task.
    Leiberg S; Kaiser J; Lutzenberger W
    Neuroimage; 2006 May; 30(4):1357-64. PubMed ID: 16469508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The M100 component of evoked magnetic fields differs by scaling factors: implications for signal averaging.
    Zacharias N; Sielużycki C; Kordecki W; König R; Heil P
    Psychophysiology; 2011 Aug; 48(8):1069-82. PubMed ID: 21342204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of healthy aging on auditory processing in humans as indexed by transient brain responses.
    Matilainen LE; Talvitie SS; Pekkonen E; Alku P; May PJ; Tiitinen H
    Clin Neurophysiol; 2010 Jun; 121(6):902-11. PubMed ID: 20359943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory gating of auditory evoked and induced gamma band activity in intracranial recordings.
    Trautner P; Rosburg T; Dietl T; Fell J; Korzyukov OA; Kurthen M; Schaller C; Elger CE; Boutros NN
    Neuroimage; 2006 Aug; 32(2):790-8. PubMed ID: 16809054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal resolution properties of human auditory cortex: reflections in the neuromagnetic auditory evoked M100 component.
    Gage N; Roberts TP; Hickok G
    Brain Res; 2006 Jan; 1069(1):166-71. PubMed ID: 16403467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An introduction to magnetoencephalography with some applications.
    Papanicolaou AC
    Brain Cogn; 1995 Apr; 27(3):331-52. PubMed ID: 7626280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEG detection of delayed auditory evoked responses in autism spectrum disorders: towards an imaging biomarker for autism.
    Roberts TP; Khan SY; Rey M; Monroe JF; Cannon K; Blaskey L; Woldoff S; Qasmieh S; Gandal M; Schmidt GL; Zarnow DM; Levy SE; Edgar JC
    Autism Res; 2010 Feb; 3(1):8-18. PubMed ID: 20063319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex.
    Gutschalk A; Patterson RD; Rupp A; Uppenkamp S; Scherg M
    Neuroimage; 2002 Jan; 15(1):207-16. PubMed ID: 11771990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of the task of categorizing FM direction on auditory evoked magnetic fields in the human auditory cortex.
    König R; Sieluzycki C; Simserides C; Heil P; Scheich H
    Brain Res; 2008 Jul; 1220():102-17. PubMed ID: 18420183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex.
    Tiitinen H; Salminen NH; Palomäki KJ; Mäkinen VT; Alku P; May PJ
    Neurosci Lett; 2006 Mar; 396(1):17-22. PubMed ID: 16343772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.