BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 15325389)

  • 1. Cross-relaxation imaging reveals detailed anatomy of white matter fiber tracts in the human brain.
    Yarnykh VL; Yuan C
    Neuroimage; 2004 Sep; 23(1):409-24. PubMed ID: 15325389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability.
    Bürgel U; Amunts K; Hoemke L; Mohlberg H; Gilsbach JM; Zilles K
    Neuroimage; 2006 Feb; 29(4):1092-105. PubMed ID: 16236527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain atrophy and lesion load in a large population of patients with multiple sclerosis.
    Tedeschi G; Lavorgna L; Russo P; Prinster A; Dinacci D; Savettieri G; Quattrone A; Livrea P; Messina C; Reggio A; Bresciamorra V; Orefice G; Paciello M; Brunetti A; Coniglio G; Bonavita S; Di Costanzo A; Bellacosa A; Valentino P; Quarantelli M; Patti F; Salemi G; Cammarata E; Simone IL; Salvatore M; Bonavita V; Alfano B
    Neurology; 2005 Jul; 65(2):280-5. PubMed ID: 16043800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: position and spatial variability of the optic radiation.
    Bürgel U; Schormann T; Schleicher A; Zilles K
    Neuroimage; 1999 Nov; 10(5):489-99. PubMed ID: 10547327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. White matter abnormalities in autism detected through transverse relaxation time imaging.
    Hendry J; DeVito T; Gelman N; Densmore M; Rajakumar N; Pavlosky W; Williamson PC; Thompson PM; Drost DJ; Nicolson R
    Neuroimage; 2006 Feb; 29(4):1049-57. PubMed ID: 16214373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New non-invasive technique to visualize three-dimensional anatomical structures of myelinated white matter tracts of human brain in vivo.
    Kinosada Y; Nakagawa T
    Front Med Biol Eng; 1994; 6(1):37-49. PubMed ID: 8060903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T1 relaxation time mapping of white matter tracts in multiple sclerosis defined by diffusion tensor imaging.
    Vaithianathar L; Tench CR; Morgan PS; Wilson M; Blumhardt LD
    J Neurol; 2002 Sep; 249(9):1272-8. PubMed ID: 12242553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neonatal brain: regional variability of in vivo MR imaging relaxation rates at 3.0 T--initial experience.
    Williams LA; Gelman N; Picot PA; Lee DS; Ewing JR; Han VK; Thompson RT
    Radiology; 2005 May; 235(2):595-603. PubMed ID: 15858099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion-weighted MR of the brain: methodology and clinical application.
    Mascalchi M; Filippi M; Floris R; Fonda C; Gasparotti R; Villari N
    Radiol Med; 2005 Mar; 109(3):155-97. PubMed ID: 15775887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI.
    Kassubek J; Unrath A; Huppertz HJ; Lulé D; Ethofer T; Sperfeld AD; Ludolph AC
    Amyotroph Lateral Scler Other Motor Neuron Disord; 2005 Dec; 6(4):213-20. PubMed ID: 16319024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voxel-based analysis of MTR images: a method to locate gray matter abnormalities in patients at the earliest stage of multiple sclerosis.
    Audoin B; Ranjeva JP; Au Duong MV; Ibarrola D; Malikova I; Confort-Gouny S; Soulier E; Viout P; Ali-Chérif A; Pelletier J; Cozzone PJ
    J Magn Reson Imaging; 2004 Nov; 20(5):765-71. PubMed ID: 15503338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal injury in the cerebral normal-appearing white matter of patients with multiple sclerosis is related to concurrent demyelination in lesions but not to concurrent demyelination in normal-appearing white matter.
    Narayanan S; Francis SJ; Sled JG; Santos AC; Antel S; Levesque I; Brass S; Lapierre Y; Sappey-Marinier D; Pike GB; Arnold DL
    Neuroimage; 2006 Jan; 29(2):637-42. PubMed ID: 16126413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for the analysis of the geometrical relationship between white matter pathology and the vascular architecture of the brain.
    Kozinska D; Holland CM; Krissian K; Westin CF; Guttmann CR
    Neuroimage; 2004 Aug; 22(4):1671-8. PubMed ID: 15275923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rotation-invariant spherical harmonic decomposition method for mapping intravoxel multiple fiber structures.
    Zhan W; Stein EA; Yang Y
    Neuroimage; 2006 Feb; 29(4):1212-23. PubMed ID: 16226040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully-automated detection of cerebral water content changes: study of age- and gender-related H2O patterns with quantitative MRI.
    Neeb H; Zilles K; Shah NJ
    Neuroimage; 2006 Feb; 29(3):910-22. PubMed ID: 16303316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolving fiber crossing using advanced fast marching tractography based on diffusion tensor imaging.
    Staempfli P; Jaermann T; Crelier GR; Kollias S; Valavanis A; Boesiger P
    Neuroimage; 2006 Mar; 30(1):110-20. PubMed ID: 16249099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy.
    Mamata H; Mamata Y; Westin CF; Shenton ME; Kikinis R; Jolesz FA; Maier SE
    AJNR Am J Neuroradiol; 2002 Jan; 23(1):67-75. PubMed ID: 11827877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetization transfer magnetic resonance imaging: a clinical review.
    Mehta RC; Pike GB; Enzmann DR
    Top Magn Reson Imaging; 1996 Aug; 8(4):214-30. PubMed ID: 8870180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative magnetic resonance imaging of brain development in premature and mature newborns.
    Hüppi PS; Warfield S; Kikinis R; Barnes PD; Zientara GP; Jolesz FA; Tsuji MK; Volpe JJ
    Ann Neurol; 1998 Feb; 43(2):224-35. PubMed ID: 9485064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiautomatic brain region extraction: a method of parcellating brain regions from structural magnetic resonance images.
    Dade LA; Gao FQ; Kovacevic N; Roy P; Rockel C; O'Toole CM; Lobaugh NJ; Feinstein A; Levine B; Black SE
    Neuroimage; 2004 Aug; 22(4):1492-502. PubMed ID: 15275906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.