BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 15326220)

  • 1. The catecholamine release-inhibitory "catestatin" fragment of chromogranin a: naturally occurring human variants with different potencies for multiple chromaffin cell nicotinic cholinergic responses.
    Mahata SK; Mahata M; Wen G; Wong WB; Mahapatra NR; Hamilton BA; O'Connor DT
    Mol Pharmacol; 2004 Nov; 66(5):1180-91. PubMed ID: 15326220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chromogranin A fragment catestatin: specificity, potency and mechanism to inhibit exocytotic secretion of multiple catecholamine storage vesicle co-transmitters.
    Mahapatra NR; Mahata M; Mahata SK; O'Connor DT
    J Hypertens; 2006 May; 24(5):895-904. PubMed ID: 16612252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary structure and function of the catecholamine release inhibitory peptide catestatin (chromogranin A(344-364)): identification of amino acid residues crucial for activity.
    Mahata SK; Mahata M; Wakade AR; O'Connor DT
    Mol Endocrinol; 2000 Oct; 14(10):1525-35. PubMed ID: 11043569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist.
    Mahata SK; O'Connor DT; Mahata M; Yoo SH; Taupenot L; Wu H; Gill BM; Parmer RJ
    J Clin Invest; 1997 Sep; 100(6):1623-33. PubMed ID: 9294131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of the catecholamine release-inhibitory peptide catestatin (human chromogranin A(352-372)) with the chromaffin cell surface and Torpedo electroplax: implications for nicotinic cholinergic antagonism.
    Taupenot L; Mahata SK; Mahata M; Parmer RJ; O'Connor DT
    Regul Pept; 2000 Nov; 95(1-3):9-17. PubMed ID: 11062327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desensitization of catecholamine release. The novel catecholamine release-inhibitory peptide catestatin (chromogranin a344-364) acts at the receptor to prevent nicotinic cholinergic tolerance.
    Mahata SK; Mahata M; Parmer RJ; O'Connor DT
    J Biol Chem; 1999 Jan; 274(5):2920-8. PubMed ID: 9915830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catecholamine secretory vesicle stimulus-transcription coupling in vivo. Demonstration by a novel transgenic promoter/photoprotein reporter and inhibition of secretion and transcription by the chromogranin A fragment catestatin.
    Mahata SK; Mahapatra NR; Mahata M; Wang TC; Kennedy BP; Ziegler MG; O'Connor DT
    J Biol Chem; 2003 Aug; 278(34):32058-67. PubMed ID: 12799369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The novel catecholamine release-inhibitory peptide catestatin (chromogranin A344-364). Properties and function.
    Mahata SK; Mahata M; Livsey Taylor CV; Taupenot L; Parmer RJ; O'Connor DT
    Adv Exp Med Biol; 2000; 482():263-77. PubMed ID: 11192587
    [No Abstract]   [Full Text] [Related]  

  • 9. Modulatory mechanism of the endogenous peptide catestatin on neuronal nicotinic acetylcholine receptors and exocytosis.
    Herrero CJ; Alés E; Pintado AJ; López MG; García-Palomero E; Mahata SK; O'Connor DT; García AG; Montiel C
    J Neurosci; 2002 Jan; 22(2):377-88. PubMed ID: 11784782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catecholamine release-inhibitory peptide catestatin (chromogranin A(352-372)): naturally occurring amino acid variant Gly364Ser causes profound changes in human autonomic activity and alters risk for hypertension.
    Rao F; Wen G; Gayen JR; Das M; Vaingankar SM; Rana BK; Mahata M; Kennedy BP; Salem RM; Stridsberg M; Abel K; Smith DW; Eskin E; Schork NJ; Hamilton BA; Ziegler MG; Mahata SK; O'Connor DT
    Circulation; 2007 May; 115(17):2271-81. PubMed ID: 17438154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteolytic cleavage of human chromogranin a containing naturally occurring catestatin variants: differential processing at catestatin region by plasmin.
    Biswas N; Vaingankar SM; Mahata M; Das M; Gayen JR; Taupenot L; Torpey JW; O'Connor DT; Mahata SK
    Endocrinology; 2008 Feb; 149(2):749-57. PubMed ID: 17991725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular interactions of the physiological anti-hypertensive peptide catestatin with the neuronal nicotinic acetylcholine receptor.
    Sahu BS; Mohan J; Sahu G; Singh PK; Sonawane PJ; Sasi BK; Allu PK; Maji SK; Bera AK; Senapati S; Mahapatra NR
    J Cell Sci; 2012 May; 125(Pt 9):2323-37. PubMed ID: 22357947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptidergic activation of transcription and secretion in chromaffin cells. Cis and trans signaling determinants of pituitary adenylyl cyclase-activating polypeptide (PACAP).
    Taupenot L; Mahata SK; Wu H; O'Connor DT
    J Clin Invest; 1998 Feb; 101(4):863-76. PubMed ID: 9466982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of action of chromogranin A on catecholamine release: molecular modeling of the catestatin region reveals a beta-strand/loop/beta-strand structure secured by hydrophobic interactions and predictive of activity.
    Tsigelny I; Mahata SK; Taupenot L; Preece NE; Mahata M; Khan I; Parmer RJ; O'Connor DT
    Regul Pept; 1998 Oct; 77(1-3):43-53. PubMed ID: 9809795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proadrenomedullin N-terminal 20 peptide: minimal active region to regulate nicotinic receptors.
    Mahata M; Mahata SK; Parmer RJ; O'Connor DT
    Hypertension; 1998 Nov; 32(5):907-16. PubMed ID: 9822452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel, catecholamine release-inhibitory peptide from chromogranin A: autocrine control of nicotinic cholinergic-stimulated exocytosis.
    Mahata SK; Mahata M; Yoo SH; Taupenot L; Wu H; Aroda VR; Livsey CV; Taulane JP; Goodman M; Parmer RJ; O'Connor DT
    Adv Pharmacol; 1998; 42():260-4. PubMed ID: 9327894
    [No Abstract]   [Full Text] [Related]  

  • 17. Functional genetic variants of the catecholamine-release-inhibitory peptide catestatin in an Indian population: allele-specific effects on metabolic traits.
    Sahu BS; Obbineni JM; Sahu G; Allu PK; Subramanian L; Sonawane PJ; Singh PK; Sasi BK; Senapati S; Maji SK; Bera AK; Gomathi BS; Mullasari AS; Mahapatra NR
    J Biol Chem; 2012 Dec; 287(52):43840-52. PubMed ID: 23105094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary sequence characterization of catestatin intermediates and peptides defines proteolytic cleavage sites utilized for converting chromogranin a into active catestatin secreted from neuroendocrine chromaffin cells.
    Lee JC; Taylor CV; Gaucher SP; Toneff T; Taupenot L; Yasothornsrikul S; Mahata SK; Sei C; Parmer RJ; Neveu JM; Lane WS; Gibson BW; O'Connor DT; Hook VY
    Biochemistry; 2003 Jun; 42(23):6938-46. PubMed ID: 12795588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus coupling to transcription versus secretion in pheochromocytoma cells. Convergent and divergent signal transduction pathways and the crucial roles for route of cytosolic calcium entry and protein kinase C.
    Tang K; Wu H; Mahata SK; Mahata M; Gill BM; Parmer RJ; O'Connor DT
    J Clin Invest; 1997 Sep; 100(5):1180-92. PubMed ID: 9276735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromaffin cell catecholamine secretion: bisindolylmaleimide compounds exhibit novel and potent antagonist effects at the nicotinic cholinergic receptor in pheochromocytoma cells.
    Mahata M; Mahapatra NR; O'Connor DT; Mahata SK
    Mol Pharmacol; 2002 Jun; 61(6):1340-7. PubMed ID: 12021395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.