BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 15326287)

  • 1. Identification of a quinone-sensitive redox switch in the ArcB sensor kinase.
    Malpica R; Franco B; Rodriguez C; Kwon O; Georgellis D
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13318-23. PubMed ID: 15326287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquinone and menaquinone electron carriers represent the yin and yang in the redox regulation of the ArcB sensor kinase.
    Alvarez AF; Rodriguez C; Georgellis D
    J Bacteriol; 2013 Jul; 195(13):3054-61. PubMed ID: 23645604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinones as the redox signal for the arc two-component system of bacteria.
    Georgellis D; Kwon O; Lin EC
    Science; 2001 Jun; 292(5525):2314-6. PubMed ID: 11423658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro and in vivo analysis of the ArcB/A redox signaling pathway.
    Alvarez AF; Georgellis D
    Methods Enzymol; 2010; 471():205-28. PubMed ID: 20946850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression.
    Malpica R; Sandoval GR; Rodríguez C; Franco B; Georgellis D
    Antioxid Redox Signal; 2006; 8(5-6):781-95. PubMed ID: 16771670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ArcB sensor kinase of Escherichia coli autophosphorylates by an intramolecular reaction.
    Peña-Sandoval GR; Georgellis D
    J Bacteriol; 2010 Mar; 192(6):1735-9. PubMed ID: 20097862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ArcB leucine zipper domain is required for proper ArcB signaling.
    Nuñez Oreza LA; Alvarez AF; Arias-Olguín II; Torres Larios A; Georgellis D
    PLoS One; 2012; 7(5):e38187. PubMed ID: 22666479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Routes of phosphoryl group transfer during signal transmission and signal decay in the dimeric sensor histidine kinase ArcB.
    Teran-Melo JL; Peña-Sandoval GR; Silva-Jimenez H; Rodriguez C; Alvarez AF; Georgellis D
    J Biol Chem; 2018 Aug; 293(34):13214-13223. PubMed ID: 29945971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of D-lactate on the physiological activity of the ArcB sensor kinase in Escherichia coli.
    Rodriguez C; Kwon O; Georgellis D
    J Bacteriol; 2004 Apr; 186(7):2085-90. PubMed ID: 15028693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinase activity of ArcB from Escherichia coli is subject to regulation by both ubiquinone and demethylmenaquinone.
    Sharma P; Stagge S; Bekker M; Bettenbrock K; Hellingwerf KJ
    PLoS One; 2013; 8(10):e75412. PubMed ID: 24116043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Requirement of the receiver and phosphotransfer domains of ArcB for efficient dephosphorylation of phosphorylated ArcA in vivo.
    Peña-Sandoval GR; Kwon O; Georgellis D
    J Bacteriol; 2005 May; 187(9):3267-72. PubMed ID: 15838055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox signal transduction by the ArcB sensor kinase of Haemophilus influenzae lacking the PAS domain.
    Georgellis D; Kwon O; Lin EC; Wong SM; Akerley BJ
    J Bacteriol; 2001 Dec; 183(24):7206-12. PubMed ID: 11717280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool.
    Bekker M; Alexeeva S; Laan W; Sawers G; Teixeira de Mattos J; Hellingwerf K
    J Bacteriol; 2010 Feb; 192(3):746-54. PubMed ID: 19933363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli.
    Iuchi S
    J Biol Chem; 1993 Nov; 268(32):23972-80. PubMed ID: 8226939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally.
    Park DM; Akhtar MS; Ansari AZ; Landick R; Kiley PJ
    PLoS Genet; 2013; 9(10):e1003839. PubMed ID: 24146625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments.
    Iuchi S; Weiner L
    J Biochem; 1996 Dec; 120(6):1055-63. PubMed ID: 9010748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the ArcA-P modulon of Escherichia coli by whole genome transcriptional analysis and sequence recognition profiling.
    Liu X; De Wulf P
    J Biol Chem; 2004 Mar; 279(13):12588-97. PubMed ID: 14711822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulation of the anoxic metabolism in Escherichia coli by ArcB deletion variants in the ArcBA two-component system.
    Bidart GN; Ruiz JA; de Almeida A; Méndez BS; Nikel PI
    Appl Environ Microbiol; 2012 Dec; 78(24):8784-94. PubMed ID: 23064346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplification of signaling activity of the arc two-component system of Escherichia coli by anaerobic metabolites. An in vitro study with different protein modules.
    Georgellis D; Kwon O; Lin EC
    J Biol Chem; 1999 Dec; 274(50):35950-4. PubMed ID: 10585483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli.
    Iuchi S; Lin EC
    J Bacteriol; 1992 Jun; 174(12):3972-80. PubMed ID: 1597416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.