These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15326290)

  • 1. pH-dependent transition between delocalized and trapped valence states of a CuA center and its possible role in proton-coupled electron transfer.
    Hwang HJ; Lu Y
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12842-7. PubMed ID: 15326290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reorganization energy of the CuA center in purple azurin: impact of the mixed valence-to-trapped valence state transition.
    Farver O; Hwang HJ; Lu Y; Pecht I
    J Phys Chem B; 2007 Jun; 111(24):6690-4. PubMed ID: 17274649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of electron transfer modulation in the purple CuA center.
    Robinson H; Ang MC; Gao YG; Hay MT; Lu Y; Wang AH
    Biochemistry; 1999 May; 38(18):5677-83. PubMed ID: 10231517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perturbations to the geometric and electronic structure of the CuA site: factors that influence delocalization and their contributions to electron transfer.
    Xie X; Gorelsky SI; Sarangi R; Garner DK; Hwang HJ; Hodgson KO; Hedman B; Lu Y; Solomon EI
    J Am Chem Soc; 2008 Apr; 130(15):5194-205. PubMed ID: 18348522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand replacement study at the His120 site of purple CuA azurin.
    Berry SM; Wang X; Lu Y
    J Inorg Biochem; 2000 Jan; 78(1):89-95. PubMed ID: 10714710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the coordinating histidine in altering the mixed valency of Cu(A): an electron nuclear double resonance-electron paramagnetic resonance investigation.
    Lukoyanov D; Berry SM; Lu Y; Antholine WE; Scholes CP
    Biophys J; 2002 May; 82(5):2758-66. PubMed ID: 11964261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational dynamics coupled to protonation equilibrium at the CuA site of Thermus thermophilus: insights into the origin of thermostability.
    Sanghamitra NJ; Mazumdar S
    Biochemistry; 2008 Feb; 47(5):1309-18. PubMed ID: 18189418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic characterizations of bridging cysteine ligand variants of an engineered Cu2(Scys)2 CuA azurin.
    Hwang HJ; Nagraj N; Lu Y
    Inorg Chem; 2006 Jan; 45(1):102-7. PubMed ID: 16390045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-binding properties of an engineered purple CuA center in azurin.
    Hay MT; Lu Y
    J Biol Inorg Chem; 2000 Dec; 5(6):699-712. PubMed ID: 11128997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic and mutagenesis studies on the CuA centre from the cytochrome-c oxidase complex of Paracoccus denitrificans.
    Farrar JA; Lappalainen P; Zumft WG; Saraste M; Thomson AJ
    Eur J Biochem; 1995 Aug; 232(1):294-303. PubMed ID: 7556164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axial interactions in the mixed-valent CuA active site and role of the axial methionine in electron transfer.
    Tsai ML; Hadt RG; Marshall NM; Wilson TD; Lu Y; Solomon EI
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14658-63. PubMed ID: 23964128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced rate of intramolecular electron transfer in an engineered purple CuA azurin.
    Farver O; Lu Y; Ang MC; Pecht I
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):899-902. PubMed ID: 9927665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable Cu(II) and Cu(I) mononuclear intermediates in the assembly of the CuA center of Thermus thermophilus cytochrome oxidase.
    Chacón KN; Blackburn NJ
    J Am Chem Soc; 2012 Oct; 134(39):16401-12. PubMed ID: 22946616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of reduction potential of an engineered Cu(A) azurin by cyclic voltammetry and spectrochemical titrations.
    Hwang HJ; Ang M; Lu Y
    J Biol Inorg Chem; 2004 Jun; 9(4):489-94. PubMed ID: 15127249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1H NMR studies on the CuA center of nitrous oxide reductase from Pseudomonas stutzeri.
    Holz RC; Alvarez ML; Zumft WG; Dooley DM
    Biochemistry; 1999 Aug; 38(34):11164-71. PubMed ID: 10460173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton-dependent electron transfer from CuA to heme a and altered EPR spectra in mutants close to heme a of cytochrome oxidase.
    Mills DA; Xu S; Geren L; Hiser C; Qin L; Sharpe MA; McCracken J; Durham B; Millett F; Ferguson-Miller S
    Biochemistry; 2008 Nov; 47(44):11499-509. PubMed ID: 18847227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Binuclear Cu
    Mirts EN; Dikanov SA; Jose A; Solomon EI; Lu Y
    J Am Chem Soc; 2020 Aug; 142(32):13779-13794. PubMed ID: 32662996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of histidine 6 protonation on the active site structure and electron-transfer capabilities of pseudoazurin from Achromobacter cycloclastes.
    Sato K; Dennison C
    Biochemistry; 2002 Jan; 41(1):120-30. PubMed ID: 11772009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH and ligand binding on the structure of the Cu site of the Met121Glu mutant of azurin from Pseudomonas aeruginosa.
    Strange RW; Murphy LM; Karlsson BG; Reinhammar B; Hasnain SS
    Biochemistry; 1996 Dec; 35(50):16391-8. PubMed ID: 8973215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axial methionine has much less influence on reduction potentials in a CuA center than in a blue copper center.
    Hwang HJ; Berry SM; Nilges MJ; Lu Y
    J Am Chem Soc; 2005 May; 127(20):7274-5. PubMed ID: 15898751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.