These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 15326308)

  • 1. Simultaneous atomic force microscope and fluorescence measurements of protein unfolding using a calibrated evanescent wave.
    Sarkar A; Robertson RB; Fernandez JM
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12882-6. PubMed ID: 15326308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observing secretory granules with a multiangle evanescent wave microscope.
    Rohrbach A
    Biophys J; 2000 May; 78(5):2641-54. PubMed ID: 10777760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-precision tracking with non-blinking quantum dots resolves nanoscale vertical displacement.
    Marchuk K; Guo Y; Sun W; Vela J; Fang N
    J Am Chem Soc; 2012 Apr; 134(14):6108-11. PubMed ID: 22458433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical characteristics of atomic force microscopy tips for single-molecule fluorescence applications.
    Gaiduk A; Kühnemuth R; Antonik M; Seidel CA
    Chemphyschem; 2005 May; 6(5):976-83. PubMed ID: 15884085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells.
    Mathur AB; Truskey GA; Reichert WM
    Biophys J; 2000 Apr; 78(4):1725-35. PubMed ID: 10733955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques.
    Schlierf M; Li H; Fernandez JM
    Proc Natl Acad Sci U S A; 2004 May; 101(19):7299-304. PubMed ID: 15123816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the energy landscape of biomolecules using single molecule force correlation spectroscopy: theory and applications.
    Barsegov V; Klimov DK; Thirumalai D
    Biophys J; 2006 Jun; 90(11):3827-41. PubMed ID: 16533852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of evanescent wave optics to the determination of absolute distance in surface force measurements using the atomic force microscope.
    Huntington ST; Hartley PG; Katsifolis J
    Ultramicroscopy; 2003 Apr; 94(3-4):283-91. PubMed ID: 12524198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein unfolding and refolding under force: methodologies for nanomechanics.
    Samorì B; Zuccheri G; Baschieri R
    Chemphyschem; 2005 Jan; 6(1):29-34. PubMed ID: 15688640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution, single-molecule measurements of biomolecular motion.
    Greenleaf WJ; Woodside MT; Block SM
    Annu Rev Biophys Biomol Struct; 2007; 36():171-90. PubMed ID: 17328679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between scattered intensity and separation for particles in an evanescent field.
    McKee CT; Clark SC; Walz JY; Ducker WA
    Langmuir; 2005 Jun; 21(13):5783-9. PubMed ID: 15952823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended Kalman filter estimates the contour length of a protein in single molecule atomic force microscopy experiments.
    Fernandez VI; Kosuri P; Parot V; Fernandez JM
    Rev Sci Instrum; 2009 Nov; 80(11):113104. PubMed ID: 19947714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex stability of single proteins explored by forced unfolding experiments.
    Janovjak H; Sapra KT; Müller DJ
    Biophys J; 2005 May; 88(5):L37-9. PubMed ID: 15792967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules.
    Vesenka J; Manne S; Giberson R; Marsh T; Henderson E
    Biophys J; 1993 Sep; 65(3):992-7. PubMed ID: 8241414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reflection interference contrast microscopy combined with scanning force microscopy verifies the nature of protein-ligand interaction force measurements.
    Stuart JK; Hlady V
    Biophys J; 1999 Jan; 76(1 Pt 1):500-8. PubMed ID: 9876163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscopy colloid-probe measurements with explicit measurement of particle-solid separation.
    Clark SC; Walz JY; Ducker WA
    Langmuir; 2004 Aug; 20(18):7616-22. PubMed ID: 15323510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the viscoelastic properties of human platelets with the atomic force microscope.
    Radmacher M; Fritz M; Kacher CM; Cleveland JP; Hansma PK
    Biophys J; 1996 Jan; 70(1):556-67. PubMed ID: 8770233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of substrate binding on the mechanical stability of mouse dihydrofolate reductase.
    Junker JP; Hell K; Schlierf M; Neupert W; Rief M
    Biophys J; 2005 Nov; 89(5):L46-8. PubMed ID: 16183885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretching a macromolecule in an atomic force microscope: statistical mechanical analysis.
    Kreuzer HJ; Payne SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 1):021906. PubMed ID: 11308517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reproducible acquisition of Escherichia coli porin surface topographs by atomic force microscopy.
    Schabert FA; Engel A
    Biophys J; 1994 Dec; 67(6):2394-403. PubMed ID: 7696479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.