BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 15326313)

  • 1. H2-rich fluids from serpentinization: geochemical and biotic implications.
    Sleep NH; Meibom A; Fridriksson T; Coleman RG; Bird DK
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12818-23. PubMed ID: 15326313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Lost City Hydrothermal Field: A Spectroscopic and Astrobiological Analogue for Nili Fossae, Mars.
    Amador ES; Bandfield JL; Brazelton WJ; Kelley D
    Astrobiology; 2017 Nov; 17(11):1138-1160. PubMed ID: 28910143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and loss of metastable brucite: does Fe(II)-bearing brucite support microbial activity in serpentinizing ecosystems?
    Templeton AS; Ellison ET
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2165):20180423. PubMed ID: 31902337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serpentinite and the dawn of life.
    Sleep NH; Bird DK; Pope EC
    Philos Trans R Soc Lond B Biol Sci; 2011 Oct; 366(1580):2857-69. PubMed ID: 21930576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets).
    Holm NG; Oze C; Mousis O; Waite JH; Guilbert-Lepoutre A
    Astrobiology; 2015 Jul; 15(7):587-600. PubMed ID: 26154779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating Serpentinization as It Could Apply to the Emergence of Life Using the JPL Hydrothermal Reactor.
    White LM; Shibuya T; Vance SD; Christensen LE; Bhartia R; Kidd R; Hoffmann A; Stucky GD; Kanik I; Russell MJ
    Astrobiology; 2020 Mar; 20(3):307-326. PubMed ID: 32125196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles.
    Hu Q; Kim DY; Yang W; Yang L; Meng Y; Zhang L; Mao HK
    Nature; 2016 Jun; 534(7606):241-4. PubMed ID: 27279220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the antigorite + brucite to olivine reaction in subducted serpentinites (Zermatt, Switzerland).
    Kempf ED; Hermann J; Reusser E; Baumgartner LP; Lanari P
    Swiss J Geosci; 2020; 113(1):16. PubMed ID: 33132816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial Residents of the Atlantis Massif's Shallow Serpentinite Subsurface.
    Motamedi S; Orcutt BN; Früh-Green GL; Twing KI; Pendleton HL; Brazelton WJ
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical and isotopic analyses of hydrocarbon-bearing fluid inclusions in olivine-rich rocks.
    Grozeva NG; Klein F; Seewald JS; Sylva SP
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2165):20180431. PubMed ID: 31902341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions.
    Klein F; Grozeva NG; Seewald JS
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):17666-17672. PubMed ID: 31427518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Evidence for an Active Microbial Methane Cycle in Subsurface Serpentinite-Hosted Groundwaters in the Samail Ophiolite, Oman.
    Kraus EA; Nothaft D; Stamps BW; Rempfert KR; Ellison ET; Matter JM; Templeton AS; Boyd ES; Spear JR
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogeochemistry of dihydrogen (H2).
    Hoehler TM
    Met Ions Biol Syst; 2005; 43():9-48. PubMed ID: 16370113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serpentinization and its implications for life on the early Earth and Mars.
    Schulte M; Blake D; Hoehler T; McCollom T
    Astrobiology; 2006 Apr; 6(2):364-76. PubMed ID: 16689652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A synthesis and meta-analysis of the Fe chemistry of serpentinites and serpentine minerals.
    Mayhew LE; Ellison ET
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2165):20180420. PubMed ID: 31902340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Moon-Forming Impact and the Autotrophic Origin of Life.
    Mrnjavac N; Wimmer JLE; Brabender M; Schwander L; Martin WF
    Chempluschem; 2023 Nov; 88(11):e202300270. PubMed ID: 37812146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A seawater throttle on H
    Tutolo BM; Seyfried WE; Tosca NJ
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14756-14763. PubMed ID: 32546521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxide-silicate petrology and geochemistry of subducted hydrous ultramafic rocks beyond antigorite dehydration (Central Alps, Switzerland).
    Vieira Duarte JF; Pettke T; Hermann J; Piccoli F
    Contrib Mineral Petrol; 2023; 178(9):60. PubMed ID: 38617192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Earth's earliest atmospheres.
    Zahnle K; Schaefer L; Fegley B
    Cold Spring Harb Perspect Biol; 2010 Oct; 2(10):a004895. PubMed ID: 20573713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.