These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 15326599)

  • 1. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two exposed amino acid residues confer thermostability on a cold shock protein.
    Perl D; Mueller U; Heinemann U; Schmid FX
    Nat Struct Biol; 2000 May; 7(5):380-3. PubMed ID: 10802734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic stabilization of a thermophilic cold shock protein.
    Perl D; Schmid FX
    J Mol Biol; 2001 Oct; 313(2):343-57. PubMed ID: 11800561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein.
    Mueller U; Perl D; Schmid FX; Heinemann U
    J Mol Biol; 2000 Apr; 297(4):975-88. PubMed ID: 10736231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic contributions to protein stability and folding energy.
    Roca M; Messer B; Warshel A
    FEBS Lett; 2007 May; 581(10):2065-71. PubMed ID: 17466986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and kinetic determinants of Thermotoga maritima cold shock protein stability: a structural and dynamic analysis.
    Motono C; Gromiha MM; Kumar S
    Proteins; 2008 May; 71(2):655-69. PubMed ID: 17975840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of ionic strength on protein stability: the cold shock protein family.
    Dominy BN; Perl D; Schmid FX; Brooks CL
    J Mol Biol; 2002 May; 319(2):541-54. PubMed ID: 12051927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of mutant forms of the Bacillus caldolyticus cold shock protein differing in thermal stability.
    Delbrück H; Mueller U; Perl D; Schmid FX; Heinemann U
    J Mol Biol; 2001 Oct; 313(2):359-69. PubMed ID: 11800562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic contributions to the stability of a thermophilic cold shock protein.
    Zhou HX; Dong F
    Biophys J; 2003 Apr; 84(4):2216-22. PubMed ID: 12668430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions.
    Makhatadze GI; Loladze VV; Gribenko AV; Lopez MM
    J Mol Biol; 2004 Feb; 336(4):929-42. PubMed ID: 15095870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the charge-charge interactions in defining stability and halophilicity of the CspB proteins.
    Gribenko AV; Makhatadze GI
    J Mol Biol; 2007 Feb; 366(3):842-56. PubMed ID: 17188709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic arrangement of ion pairs and individual contributions to the thermal stability of the cofactor-binding domain of glutamate dehydrogenase from Thermotoga maritima.
    Danciulescu C; Ladenstein R; Nilsson L
    Biochemistry; 2007 Jul; 46(29):8537-49. PubMed ID: 17602502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein stability and surface electrostatics: a charged relationship.
    Strickler SS; Gribenko AV; Gribenko AV; Keiffer TR; Tomlinson J; Reihle T; Loladze VV; Makhatadze GI
    Biochemistry; 2006 Mar; 45(9):2761-6. PubMed ID: 16503630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of electrostatic interactions for the stability and folding behavior of cold shock protein.
    Su JG; Chen WZ; Wang CX
    Proteins; 2010 Jul; 78(9):2157-69. PubMed ID: 20455270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic interactions contribute to reduced heat capacity change of unfolding in a thermophilic ribosomal protein l30e.
    Lee CF; Allen MD; Bycroft M; Wong KB
    J Mol Biol; 2005 Apr; 348(2):419-31. PubMed ID: 15811378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms.
    Glyakina AV; Garbuzynskiy SO; Lobanov MY; Galzitskaya OV
    Bioinformatics; 2007 Sep; 23(17):2231-8. PubMed ID: 17599925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic contributions to the stability of halophilic proteins.
    Elcock AH; McCammon JA
    J Mol Biol; 1998 Jul; 280(4):731-48. PubMed ID: 9677300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-vitro selection of highly stabilized protein variants with optimized surface.
    Martin A; Sieber V; Schmid FX
    J Mol Biol; 2001 Jun; 309(3):717-26. PubMed ID: 11397091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.