BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15327255)

  • 21. Potential of constructed wetland systems for treating tannery industrial wastewater.
    Kaseva ME; Mbuligwe SE
    Water Sci Technol; 2010; 61(4):1043-52. PubMed ID: 20182085
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Treatment of oil-manufacturing wastewater by yeast-SBR system].
    Lü WZ; Liu Y; Huang YZ
    Huan Jing Ke Xue; 2008 Apr; 29(4):966-71. PubMed ID: 18637347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of chromium (III) by using coal as adsorbent.
    Anwar J; Shafique U; Salman M; Waheed-uz-Zaman ; Anwar S; Anzano JM
    J Hazard Mater; 2009 Nov; 171(1-3):797-801. PubMed ID: 19592161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential of pomegranate husk carbon for Cr(VI) removal from wastewater: kinetic and isotherm studies.
    Nemr AE
    J Hazard Mater; 2009 Jan; 161(1):132-41. PubMed ID: 18485590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lime enhanced chromium removal in advanced integrated wastewater pond system.
    Tadesse I; Isoaho SA; Green FB; Puhakka JA
    Bioresour Technol; 2006 Mar; 97(4):529-34. PubMed ID: 15963717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Some properties of a sequencing batch reactor system for removal of vat dyes.
    Sirianuntapiboon S; Chairattanawan K; Jungphungsukpanich S
    Bioresour Technol; 2006 Jul; 97(10):1243-52. PubMed ID: 16023339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wastewater treatment of pulp and paper industry: a review.
    Kansal A; Siddiqui N; Gautam A
    J Environ Sci Eng; 2011 Apr; 53(2):203-18. PubMed ID: 23033705
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H.
    Rengaraj S; Joo CK; Kim Y; Yi J
    J Hazard Mater; 2003 Aug; 102(2-3):257-75. PubMed ID: 12972242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of Cr (VI) from aqueous solutions by Acacia nilotica bark.
    Rani N; Gupta A; Yadav AK
    Environ Technol; 2006 Jun; 27(6):597-602. PubMed ID: 16865915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic and breakthrough column studies for the selective sorption of chromium from industrial effluent on activated eucalyptus bark.
    Sarin V; Singh TS; Pant KK
    Bioresour Technol; 2006 Nov; 97(16):1986-93. PubMed ID: 16311033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of chromium by riverbed sand from water and wastewater: effect of important parameters.
    Sharma YC; Singh B; Agrawal A; Weng CH
    J Hazard Mater; 2008 Mar; 151(2-3):789-93. PubMed ID: 17656013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification of chromium(VI) finishing wastewaters using calcined and uncalcined Mg-Al-CO3-hydrotalcite.
    Alvarez-Ayuso E; Nugteren HW
    Water Res; 2005 Jul; 39(12):2535-42. PubMed ID: 15993462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of ionic liquids for the removal of heavy metals from wastewater and activated sludge.
    Fuerhacker M; Haile TM; Kogelnig D; Stojanovic A; Keppler B
    Water Sci Technol; 2012; 65(10):1765-73. PubMed ID: 22546790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cr(VI) removal from wastewater using low cost sorbent materials: roots of Typha latifolia and ashes.
    Barrera-Díaz C; Colín-Cruz A; Ureña-Nuñez F; Romero-Romo M; Palomar-Pardavé M
    Environ Technol; 2004 Aug; 25(8):907-17. PubMed ID: 15366558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater.
    Sponza DT; Gök O
    Bioresour Technol; 2010 Feb; 101(3):914-24. PubMed ID: 19783137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The use of chemical uncoupler to reduce sludge yield in activated sludge process].
    Ye F; Chen Y; Feng X
    Huan Jing Ke Xue; 2003 Nov; 24(6):112-5. PubMed ID: 14768576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of Fe(II) from the wastewater of a galvanized pipe manufacturing industry by adsorption onto bentonite clay.
    Tahir SS; Rauf N
    J Environ Manage; 2004 Dec; 73(4):285-92. PubMed ID: 15531387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Characterization of Cr (VI) removal and total Cr equilibrium adsorption by sulfate reducing granular sludge in stimulant wastewater].
    Luo J; Pang ZH; Hu YY; Zhong HT; Chen JY; Lin FM
    Huan Jing Ke Xue; 2010 Nov; 31(11):2691-8. PubMed ID: 21250453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pollutants removal from synthetic wastewater by the combined electrochemical, adsorption and sequencing batch reactor (SBR).
    Mojiri A; Ohashi A; Ozaki N; Kindaichi T
    Ecotoxicol Environ Saf; 2018 Oct; 161():137-144. PubMed ID: 29879574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.