These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 15327538)

  • 1. Human sebaceous glands engage in aerobic glycolysis and glutaminolysis.
    Downie MM; Kealey T
    Br J Dermatol; 2004 Aug; 151(2):320-7. PubMed ID: 15327538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycolytic, glutaminolytic and pentose-phosphate pathways in promyelocytic HL60 and DMSO-differentiated HL60 cells.
    Ahmed N; Williams JF; Weidemann MJ
    Biochem Mol Biol Int; 1993 Apr; 29(6):1055-67. PubMed ID: 8330014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells.
    Neermann J; Wagner R
    J Cell Physiol; 1996 Jan; 166(1):152-69. PubMed ID: 8557765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profile of energy metabolism in a murine hybridoma: glucose and glutamine utilization.
    Petch D; Butler M
    J Cell Physiol; 1994 Oct; 161(1):71-6. PubMed ID: 7929610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of glyoxal or methylglyoxal on the metabolism of amino acids, lactate, glucose and acetate in the cerebral cortex of young and adult rats.
    Schmidt B; de Assis AM; Battu CE; Rieger DK; Hansen F; Sordi F; Longoni A; Hoefel AL; Farina M; Gonçalves CA; Souza DO; Perry ML
    Brain Res; 2010 Feb; 1315():19-24. PubMed ID: 20005868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycerol and lactate induce reciprocal changes in glucose formation and glutamine production in isolated rabbit kidney-cortex tubules incubated with aspartate.
    Lietz T; Bryła J
    Arch Biochem Biophys; 1995 Aug; 321(2):501-9. PubMed ID: 7646077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyruvate kinase and the interaction of amino acid and carbohydrate metabolism in solid tumors.
    Eigenbrodt E; Kallinowski F; Ott M; Mazurek S; Vaupel P
    Anticancer Res; 1998; 18(5A):3267-74. PubMed ID: 9858894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2]glucose reveals a heterogeneous metabolism in human leukemia T cells.
    Miccheli A; Tomassini A; Puccetti C; Valerio M; Peluso G; Tuccillo F; Calvani M; Manetti C; Conti F
    Biochimie; 2006 May; 88(5):437-48. PubMed ID: 16359766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycolysis and glutaminolysis in perifused Ehrlich ascites tumour cells.
    Segura JA; Medina MA; Alonso FJ; Sanchez-Jimenez F; Núñez de Castro I
    Cell Biochem Funct; 1989 Jan; 7(1):7-10. PubMed ID: 2752538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy substrate utilization in freshly isolated Morris Hepatoma 7777 cells.
    Mares-Perlman JA; Shrago E
    Cancer Res; 1988 Feb; 48(3):602-8. PubMed ID: 3335023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral glucose metabolism and the glutamine cycle as detected by in vivo and in vitro 13C NMR spectroscopy.
    García-Espinosa MA; Rodrigues TB; Sierra A; Benito M; Fonseca C; Gray HL; Bartnik BL; García-Martín ML; Ballesteros P; Cerdán S
    Neurochem Int; 2004; 45(2-3):297-303. PubMed ID: 15145545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxisome proliferator-activated receptor and farnesoid X receptor ligands differentially regulate sebaceous differentiation in human sebaceous gland organ cultures in vitro.
    Downie MM; Sanders DA; Maier LM; Stock DM; Kealey T
    Br J Dermatol; 2004 Oct; 151(4):766-75. PubMed ID: 15491415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance and biochemical measurements of glucose utilization in the cone-dominant ground squirrel retina.
    Winkler BS; Starnes CA; Twardy BS; Brault D; Taylor RC
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4613-9. PubMed ID: 18566456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal-glial interactions in rats fed a ketogenic diet.
    Melø TM; Nehlig A; Sonnewald U
    Neurochem Int; 2006; 48(6-7):498-507. PubMed ID: 16542760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of freshly isolated human hair follicles capable of hair elongation: a glutaminolytic, aerobic glycolytic tissue.
    Williams R; Philpott MP; Kealey T
    J Invest Dermatol; 1993 Jun; 100(6):834-40. PubMed ID: 8496624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipogenesis in the human sebaceous gland: glycogen and glycerophosphate are substrates for the synthesis of sebum lipids.
    Downie MM; Kealey T
    J Invest Dermatol; 1998 Aug; 111(2):199-205. PubMed ID: 9699717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of the lactate-alanine shuttle is independent of glutamate-glutamine cycle activity in cerebellar neuronal-astrocytic cultures.
    Bak LK; Sickmann HM; Schousboe A; Waagepetersen HS
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):88-96. PubMed ID: 15578733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of intracellular fluxes in cerebellar neurons after hypoglycemia: importance of the pyruvate recycling pathway and glutamine oxidation.
    Amaral AI; Teixeira AP; Sonnewald U; Alves PM
    J Neurosci Res; 2011 May; 89(5):700-10. PubMed ID: 21337365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of metabolic flux distributions for MDCK cell growth in glutamine- and pyruvate-containing media.
    Sidorenko Y; Wahl A; Dauner M; Genzel Y; Reichl U
    Biotechnol Prog; 2008; 24(2):311-20. PubMed ID: 18215054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRL/lpr mice have alterations in brain metabolism as shown with [1H-13C] NMR spectroscopy.
    Alexander JJ; Zwingmann C; Quigg R
    Neurochem Int; 2005 Jul; 47(1-2):143-51. PubMed ID: 15893408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.