These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 15327707)

  • 1. Mapping of process-induced dopant redistributions by electron holography.
    Rau WD; Orchowski A
    Microsc Microanal; 2004 Aug; 10(4):462-9. PubMed ID: 15327707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative electron holographic tomography for the 3D characterisation of semiconductor device structures.
    Twitchett-Harrison AC; Yates TJ; Dunin-Borkowski RE; Midgley PA
    Ultramicroscopy; 2008 Oct; 108(11):1401-7. PubMed ID: 18703284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of electrostatic potential in deep submicron CMOS devices by electron holography.
    Gribelyuk MA; McCartney MR; Li J; Murthy CS; Ronsheim P; Doris B; McMurray JS; Hegde S; Smith DJ
    Phys Rev Lett; 2002 Jul; 89(2):025502. PubMed ID: 12097001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron holography study for two-dimensional dopant profile measurement with specimens prepared by backside ion milling.
    Yoo JH; Yang JM; Ulugbek S; Ahn CW; Hwang WJ; Park JK; Park CM; Hong SB; Kim JJ; Shindo D
    J Electron Microsc (Tokyo); 2008 Jan; 57(1):13-8. PubMed ID: 18175780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element simulations of electrostatic dopant potentials in thin semiconductor specimens for electron holography.
    Somodi PK; Twitchett-Harrison AC; Midgley PA; Kardynał BE; Barnes CH; Dunin-Borkowski RE
    Ultramicroscopy; 2013 Nov; 134():160-6. PubMed ID: 23953735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D-mapping of dopant distribution in deep sub micron CMOS devices by electron holography using adapted FIB-preparation.
    Lenk A; Lichte H; Muehle U
    J Electron Microsc (Tokyo); 2005 Aug; 54(4):351-9. PubMed ID: 16123059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of oxide overlayers on secondary electron dopant mapping.
    Dapor M; Jepson MA; Inkson BJ; Rodenburg C
    Microsc Microanal; 2009 Jun; 15(3):237-43. PubMed ID: 19460180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional doping and diffusion in nano scaled devices as studied by atom probe tomography.
    Kambham AK; Kumar A; Florakis A; Vandervorst W
    Nanotechnology; 2013 Jul; 24(27):275705. PubMed ID: 23764804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging modes for potential mapping in semiconductor devices by electron holography with improved lateral resolution.
    Sickmann J; Formánek P; Linck M; Muehle U; Lichte H
    Ultramicroscopy; 2011 Mar; 111(4):290-302. PubMed ID: 21353156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional quantitative mapping of arsenic in nanometer-scale silicon devices using STEM EELS-EDX spectroscopy.
    Servanton G; Pantel R; Juhel M; Bertin F
    Micron; 2009; 40(5-6):543-51. PubMed ID: 19414268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sample preparation for precise and quantitative electron holographic analysis of semiconductor devices.
    Han MG; Li J; Xie Q; Fejes P; Conner J; Taylor B; McCartney MR
    Microsc Microanal; 2006 Aug; 12(4):295-301. PubMed ID: 16842641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the electrical properties of semiconductor junctions--the electron holographic approach.
    Twitchett-Harrison AC; Dunin-Borkowski RE; Midgley PA
    Scanning; 2008; 30(4):299-309. PubMed ID: 18642298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography.
    Yazdi S; Kasama T; Beleggia M; Samaie Yekta M; McComb DW; Twitchett-Harrison AC; Dunin-Borkowski RE
    Ultramicroscopy; 2015 May; 152():10-20. PubMed ID: 25576656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dopant introduction device for atmospheric pressure photoionization with liquid chromatography/mass spectrometry.
    McCulloch RD; Robb DB; Blades MW
    Rapid Commun Mass Spectrom; 2008 Nov; 22(22):3549-54. PubMed ID: 18924120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-D analysis of semiconductor dopant distributions in a patterned structure using LEAP.
    Moore JS; Jones KS; Kennel H; Corcoran S
    Ultramicroscopy; 2008 May; 108(6):536-9. PubMed ID: 18031933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On specimen tilt for electron holography of semiconductor devices.
    Formanek P; Bugiel E
    Ultramicroscopy; 2006 Mar; 106(4-5):292-300. PubMed ID: 16330148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron holographic mapping of two-dimensional doping areas in cross-sectional device specimens prepared by the lift-out technique based on a focused ion beam.
    Wang ZG; Kato N; Sasaki K; Hirayama T; Saka H
    J Electron Microsc (Tokyo); 2004; 53(2):115-9. PubMed ID: 15180205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy.
    van Benthem K; Lupini AR; Oxley MP; Findlay SD; Allen LJ; Pennycook SJ
    Ultramicroscopy; 2006; 106(11-12):1062-8. PubMed ID: 16875782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing semiconductor device performance using ordered dopant arrays.
    Shinada T; Okamoto S; Kobayashi T; Ohdomari I
    Nature; 2005 Oct; 437(7062):1128-31. PubMed ID: 16237438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative secondary electron energy filtering in a scanning electron microscope and its applications.
    Kazemian P; Mentink SA; Rodenburg C; Humphreys CJ
    Ultramicroscopy; 2007; 107(2-3):140-50. PubMed ID: 16872746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.