These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 15327777)
1. The p53-induced oncogenic phosphatase PPM1D interacts with uracil DNA glycosylase and suppresses base excision repair. Lu X; Bocangel D; Nannenga B; Yamaguchi H; Appella E; Donehower LA Mol Cell; 2004 Aug; 15(4):621-34. PubMed ID: 15327777 [TBL] [Abstract][Full Text] [Related]
2. Augmented cancer resistance and DNA damage response phenotypes in PPM1D null mice. Nannenga B; Lu X; Dumble M; Van Maanen M; Nguyen TA; Sutton R; Kumar TR; Donehower LA Mol Carcinog; 2006 Aug; 45(8):594-604. PubMed ID: 16652371 [TBL] [Abstract][Full Text] [Related]
3. Homeostatic regulation of base excision repair by a p53-induced phosphatase: linking stress response pathways with DNA repair proteins. Lu X; Nguyen TA; Appella E; Donehower LA Cell Cycle; 2004 Nov; 3(11):1363-6. PubMed ID: 15539943 [TBL] [Abstract][Full Text] [Related]
4. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress. Akbari M; Otterlei M; Peña-Diaz J; Krokan HE Neuroscience; 2007 Apr; 145(4):1201-12. PubMed ID: 17101234 [TBL] [Abstract][Full Text] [Related]
5. Reversal of the ATM/ATR-mediated DNA damage response by the oncogenic phosphatase PPM1D. Lu X; Nguyen TA; Donehower LA Cell Cycle; 2005 Aug; 4(8):1060-4. PubMed ID: 15970689 [TBL] [Abstract][Full Text] [Related]
6. PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Lu X; Nannenga B; Donehower LA Genes Dev; 2005 May; 19(10):1162-74. PubMed ID: 15870257 [TBL] [Abstract][Full Text] [Related]
7. Strikingly different properties of uracil-DNA glycosylases UNG2 and SMUG1 may explain divergent roles in processing of genomic uracil. Doseth B; Ekre C; Slupphaug G; Krokan HE; Kavli B DNA Repair (Amst); 2012 Jun; 11(6):587-93. PubMed ID: 22483865 [TBL] [Abstract][Full Text] [Related]
8. Glycogen Synthase Kinase 3 (GSK-3)-mediated Phosphorylation of Uracil N-Glycosylase 2 (UNG2) Facilitates the Repair of Floxuridine-induced DNA Lesions and Promotes Cell Survival. Baehr CA; Huntoon CJ; Hoang SM; Jerde CR; Karnitz LM J Biol Chem; 2016 Dec; 291(52):26875-26885. PubMed ID: 27875297 [TBL] [Abstract][Full Text] [Related]
9. The oncogenic phosphatase WIP1 negatively regulates nucleotide excision repair. Nguyen TA; Slattery SD; Moon SH; Darlington YF; Lu X; Donehower LA DNA Repair (Amst); 2010 Jul; 9(7):813-23. PubMed ID: 20451471 [TBL] [Abstract][Full Text] [Related]
10. Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells. Akbari M; Otterlei M; Peña-Diaz J; Aas PA; Kavli B; Liabakk NB; Hagen L; Imai K; Durandy A; Slupphaug G; Krokan HE Nucleic Acids Res; 2004; 32(18):5486-98. PubMed ID: 15479784 [TBL] [Abstract][Full Text] [Related]
11. Post-replicative base excision repair in replication foci. Otterlei M; Warbrick E; Nagelhus TA; Haug T; Slupphaug G; Akbari M; Aas PA; Steinsbekk K; Bakke O; Krokan HE EMBO J; 1999 Jul; 18(13):3834-44. PubMed ID: 10393198 [TBL] [Abstract][Full Text] [Related]
12. Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms. Pettersen HS; Sundheim O; Gilljam KM; Slupphaug G; Krokan HE; Kavli B Nucleic Acids Res; 2007; 35(12):3879-92. PubMed ID: 17537817 [TBL] [Abstract][Full Text] [Related]
13. Direct interaction between XRCC1 and UNG2 facilitates rapid repair of uracil in DNA by XRCC1 complexes. Akbari M; Solvang-Garten K; Hanssen-Bauer A; Lieske NV; Pettersen HS; Pettersen GK; Wilson DM; Krokan HE; Otterlei M DNA Repair (Amst); 2010 Jul; 9(7):785-95. PubMed ID: 20466601 [TBL] [Abstract][Full Text] [Related]
14. The rate of base excision repair of uracil is controlled by the initiating glycosylase. Visnes T; Akbari M; Hagen L; Slupphaug G; Krokan HE DNA Repair (Amst); 2008 Nov; 7(11):1869-81. PubMed ID: 18721906 [TBL] [Abstract][Full Text] [Related]
15. PPM1D phosphatase, a target of p53 and RBM38 RNA-binding protein, inhibits p53 mRNA translation via dephosphorylation of RBM38. Zhang M; Xu E; Zhang J; Chen X Oncogene; 2015 Nov; 34(48):5900-11. PubMed ID: 25823026 [TBL] [Abstract][Full Text] [Related]
16. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Bulavin DV; Demidov ON; Saito S; Kauraniemi P; Phillips C; Amundson SA; Ambrosino C; Sauter G; Nebreda AR; Anderson CW; Kallioniemi A; Fornace AJ; Appella E Nat Genet; 2002 Jun; 31(2):210-5. PubMed ID: 12021785 [TBL] [Abstract][Full Text] [Related]
17. Regulation of the antioncogenic Chk2 kinase by the oncogenic Wip1 phosphatase. Fujimoto H; Onishi N; Kato N; Takekawa M; Xu XZ; Kosugi A; Kondo T; Imamura M; Oishi I; Yoda A; Minami Y Cell Death Differ; 2006 Jul; 13(7):1170-80. PubMed ID: 16311512 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the active site and a unique uncompetitive inhibitor of the PPM1-type protein phosphatase PPM1D. Chuman Y; Yagi H; Fukuda T; Nomura T; Matsukizono M; Shimohigashi Y; Sakaguchi K Protein Pept Lett; 2008; 15(9):938-48. PubMed ID: 18991770 [TBL] [Abstract][Full Text] [Related]
19. Induction of PPM1D following DNA-damaging treatments through a conserved p53 response element coincides with a shift in the use of transcription initiation sites. Rossi M; Demidov ON; Anderson CW; Appella E; Mazur SJ Nucleic Acids Res; 2008 Dec; 36(22):7168-80. PubMed ID: 19015127 [TBL] [Abstract][Full Text] [Related]
20. Error-free versus mutagenic processing of genomic uracil--relevance to cancer. Krokan HE; Sætrom P; Aas PA; Pettersen HS; Kavli B; Slupphaug G DNA Repair (Amst); 2014 Jul; 19():38-47. PubMed ID: 24746924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]