These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15327856)

  • 1. Influence of plants on the chemical extractability and biodegradability of 2,4-dichlorophenol in soil.
    Boucard TK; Bardgett RD; Jones KC; Semple KT
    Environ Pollut; 2005 Jan; 133(1):53-62. PubMed ID: 15327856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of [3-(14)C]phenyldodecane biodegradation in cable insulating oil-spiked soil using selected extraction techniques.
    Dew NM; Paton GI; Semple KT
    Environ Pollut; 2005 Nov; 138(2):316-23. PubMed ID: 15949878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogenic volatile organic compounds as a potential stimulator for organic contaminant degradation by soil microorganisms.
    McLoughlin E; Rhodes AH; Owen SM; Semple KT
    Environ Pollut; 2009 Jan; 157(1):86-94. PubMed ID: 18819735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the possibility of hydrogen peroxide pretreatment and plant system to remediate soil pollution.
    Lin Q; Chen Y; Wang Z; Wang Y
    Chemosphere; 2004 Dec; 57(10):1439-47. PubMed ID: 15519388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissipation of 2,4-D in soils of the Humid Pampa region, Argentina: a microcosm study.
    Merini LJ; Cuadrado V; Flocco CG; Giulietti AM
    Chemosphere; 2007 Jun; 68(2):259-65. PubMed ID: 17316752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atrazine and simazine degradation in Pennisetum rhizosphere.
    Singh N; Megharaj M; Kookana RS; Naidu R; Sethunathan N
    Chemosphere; 2004 Jul; 56(3):257-63. PubMed ID: 15172598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contact-time-dependent atrazine residue formation in surface soils.
    Lesan HM; Bhandari A
    Water Res; 2004 Dec; 38(20):4435-45. PubMed ID: 15556218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health.
    Epelde L; Becerril JM; Mijangos I; Garbisu C
    J Environ Qual; 2009; 38(5):2041-9. PubMed ID: 19704147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of 2,4-dichlorophenol, pentachlorophenol and vegetation on microbial characteristics in a heavy metal polluted soil.
    Lin Q; Zhao HM; Chen YX
    J Environ Sci Health B; 2007; 42(5):551-7. PubMed ID: 17562463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spiking solvent, humidity and their impact on 2,4-D and 2,4-DCP extractability from high humic matter content soils.
    Merini LJ; Cuadrado V; Giulietti AM
    Chemosphere; 2008 May; 71(11):2168-72. PubMed ID: 18275981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and accumulation of phenanthrene and pyrene in spiked soils by Ryegrass (Lolium perenne L.).
    Xu SY; Chen YX; Lin Q; Wu WX; Xue SG; Shen CF
    J Environ Sci (China); 2005; 17(5):817-22. PubMed ID: 16313010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of 2,4-dichlorophenol in the presence of volatile organic compounds in soils under different vegetation types.
    Rhodes AH; Owen SM; Semple KT
    FEMS Microbiol Lett; 2007 Apr; 269(2):323-30. PubMed ID: 17391503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of soil contaminated with 2,4-dichlorophenol by treatment of minced shepherd's purse roots.
    Park JW; Park BK; Kim JE
    Arch Environ Contam Toxicol; 2006 Feb; 50(2):191-5. PubMed ID: 16392021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobilization of phenol and dichlorophenol in unsaturated soils by non-uniform electrokinetics.
    Luo Q; Zhang X; Wang H; Qian Y
    Chemosphere; 2005 Jun; 59(9):1289-98. PubMed ID: 15857640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial variability in the mineralisation of the phenylurea herbicide linuron within a Danish agricultural field: multivariate correlation to simple soil parameters.
    Rasmussen J; Aamand J; Rosenberg P; Jacobsen OS; Sørensen SR
    Pest Manag Sci; 2005 Sep; 61(9):829-37. PubMed ID: 15739226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of 2D non-uniform electric field to enhance in situ bioremediation of 2,4-dichlorophenol-contaminated soil.
    Fan X; Wang H; Luo Q; Ma J; Zhang X
    J Hazard Mater; 2007 Sep; 148(1-2):29-37. PubMed ID: 17418487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne.
    Santibáñez C; Verdugo C; Ginocchio R
    Sci Total Environ; 2008 May; 395(1):1-10. PubMed ID: 18342913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effects of carbon nanotubes on the degradation of 14C-2,4-dichlorophenol in soil.
    Zhou W; Shan J; Jiang B; Wang L; Feng J; Guo H; Ji R
    Chemosphere; 2013 Jan; 90(2):527-34. PubMed ID: 22963879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a more appropriate water based extraction for the assessment of organic contaminant availability.
    Hickman ZA; Reid BJ
    Environ Pollut; 2005 Nov; 138(2):299-306. PubMed ID: 15936859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.