These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 15328048)
21. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
22. Effect of Sterol Structure on the Physical Properties of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine Membranes Determined Using (2)H Nuclear Magnetic Resonance. Shaghaghi M; Chen MT; Hsueh YW; Zuckermann MJ; Thewalt JL Langmuir; 2016 Aug; 32(30):7654-63. PubMed ID: 27341069 [TBL] [Abstract][Full Text] [Related]
23. On the importance of the phosphocholine methyl groups for sphingomyelin/cholesterol interactions in membranes: a study with ceramide phosphoethanolamine. Térová B; Heczko R; Slotte JP Biophys J; 2005 Apr; 88(4):2661-9. PubMed ID: 15653729 [TBL] [Abstract][Full Text] [Related]
24. Phosphatidyl alcohols: effect of head group size on domain forming properties and interactions with sterols. Jaikishan S; Björkbom A; Slotte JP Biochim Biophys Acta; 2010 Aug; 1798(8):1615-22. PubMed ID: 20359462 [TBL] [Abstract][Full Text] [Related]
25. Membrane bilayer properties of sphingomyelins with amide-linked 2- or 3-hydroxylated fatty acids. Ekholm O; Jaikishan S; Lönnfors M; Nyholm TK; Slotte JP Biochim Biophys Acta; 2011 Mar; 1808(3):727-32. PubMed ID: 21167130 [TBL] [Abstract][Full Text] [Related]
26. Lateral Segregation of Palmitoyl Ceramide-1-Phosphate in Simple and Complex Bilayers. Al Sazzad MA; Yasuda T; Nyholm TKM; Slotte JP Biophys J; 2019 Jul; 117(1):36-45. PubMed ID: 31133285 [TBL] [Abstract][Full Text] [Related]
27. Sterol affinity for phospholipid bilayers is influenced by hydrophobic matching between lipids and transmembrane peptides. Ijäs HK; Lönnfors M; Nyholm TK Biochim Biophys Acta; 2013 Mar; 1828(3):932-7. PubMed ID: 23220446 [TBL] [Abstract][Full Text] [Related]
28. Sterol chemical configuration influences the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayers containing 5α-cholestan-3β- and 3α-ol. Benesch MG; Mannock DA; McElhaney RN Chem Phys Lipids; 2011 Jan; 164(1):62-9. PubMed ID: 21055394 [TBL] [Abstract][Full Text] [Related]
29. A calorimetric and spectroscopic comparison of the effects of cholesterol and its immediate biosynthetic precursors 7-dehydrocholesterol and desmosterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Benesch MG; Lewis RN; McElhaney RN Chem Phys Lipids; 2015 Oct; 191():123-35. PubMed ID: 26368000 [TBL] [Abstract][Full Text] [Related]
30. Interaction of NBD-labelled fatty amines with liquid-ordered membranes: a combined molecular dynamics simulation and fluorescence spectroscopy study. Filipe HA; Bowman D; Palmeira T; Cardoso RM; Loura LM; Moreno MJ Phys Chem Chem Phys; 2015 Nov; 17(41):27534-47. PubMed ID: 26426766 [TBL] [Abstract][Full Text] [Related]
31. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Sot J; Bagatolli LA; Goñi FM; Alonso A Biophys J; 2006 Feb; 90(3):903-14. PubMed ID: 16284266 [TBL] [Abstract][Full Text] [Related]
32. Lipid headgroups mediate organization and dynamics in bilayers. Greenough KP; Blanchard GJ Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):2050-6. PubMed ID: 18805049 [TBL] [Abstract][Full Text] [Related]
33. Solubilization of binary lipid mixtures by the detergent Triton X-100: the role of cholesterol. Mattei B; França AD; Riske KA Langmuir; 2015; 31(1):378-86. PubMed ID: 25474726 [TBL] [Abstract][Full Text] [Related]
34. Cholesterol versus cholesterol sulfate: effects on properties of phospholipid bilayers containing docosahexaenoic acid. Schofield M; Jenski LJ; Dumaual AC; Stillwell W Chem Phys Lipids; 1998 Sep; 95(1):23-36. PubMed ID: 9807808 [TBL] [Abstract][Full Text] [Related]
35. The study on the interaction between phytosterols and phospholipids in model membranes. Hac-Wydro K; Wydro P; Jagoda A; Kapusta J Chem Phys Lipids; 2007 Nov; 150(1):22-34. PubMed ID: 17632093 [TBL] [Abstract][Full Text] [Related]
36. Plant sterol inhibition of abscisic acid-induced perturbations in phospholipid bilayers. Stillwell W; Cheng YF; Wassall SR Biochim Biophys Acta; 1990 May; 1024(2):345-51. PubMed ID: 2141283 [TBL] [Abstract][Full Text] [Related]
37. Structures of biologically active oxysterols determine their differential effects on phospholipid membranes. Massey JB; Pownall HJ Biochemistry; 2006 Sep; 45(35):10747-58. PubMed ID: 16939227 [TBL] [Abstract][Full Text] [Related]
38. The effect of cholesterol on the solubilization of phosphatidylcholine bilayers by the non-ionic surfactant Triton X-100. Schnitzer E; Kozlov MM; Lichtenberg D Chem Phys Lipids; 2005 May; 135(1):69-82. PubMed ID: 15854626 [TBL] [Abstract][Full Text] [Related]
39. Effect of hydrophobic mismatch and interdigitation on sterol/sphingomyelin interaction in ternary bilayer membranes. Jaikishan S; Slotte JP Biochim Biophys Acta; 2011 Jul; 1808(7):1940-5. PubMed ID: 21515240 [TBL] [Abstract][Full Text] [Related]
40. Effect of cholesterol and ergosterol on the compressibility and volume fluctuations of phospholipid-sterol bilayers in the critical point region: a molecular acoustic and calorimetric study. Krivanek R; Okoro L; Winter R Biophys J; 2008 May; 94(9):3538-48. PubMed ID: 18199673 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]