BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 15328613)

  • 1. Characterization and quantification of triple helix formation in chromosomal DNA.
    Besch R; Giovannangeli C; Schuh T; Kammerbauer C; Degitz K
    J Mol Biol; 2004 Aug; 341(4):979-89. PubMed ID: 15328613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting chromosomal sites with locked nucleic acid-modified triplex-forming oligonucleotides: study of efficiency dependence on DNA nuclear environment.
    Brunet E; Corgnali M; Cannata F; Perrouault L; Giovannangeli C
    Nucleic Acids Res; 2006; 34(16):4546-53. PubMed ID: 16951289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of psoralen DNA crosslinking kinetics associated with a triplex-forming oligonucleotide.
    Oh DH; Suzara V; Krishnan R
    Photochem Photobiol; 2008; 84(3):727-33. PubMed ID: 18435621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-efficiency triple-helix-mediated photo-cross-linking at a targeted site within a selectable mammalian gene.
    Vasquez KM; Wensel TG; Hogan ME; Wilson JH
    Biochemistry; 1996 Aug; 35(33):10712-9. PubMed ID: 8718860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of bioactive triple helix-forming oligonucleotides.
    Seidman MM; Puri N; Majumdar A; Cuenoud B; Miller PS; Alam R
    Ann N Y Acad Sci; 2005 Nov; 1058():119-27. PubMed ID: 16394131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted gene knockout mediated by triple helix forming oligonucleotides.
    Majumdar A; Khorlin A; Dyatkina N; Lin FL; Powell J; Liu J; Fei Z; Khripine Y; Watanabe KA; George J; Glazer PM; Seidman MM
    Nat Genet; 1998 Oct; 20(2):212-4. PubMed ID: 9771719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of clustered 2'-O-(2-aminoethyl) residues for the gene targeting activity of triple helix-forming oligonucleotides.
    Puri N; Majumdar A; Cuenoud B; Miller PS; Seidman MM
    Biochemistry; 2004 Feb; 43(5):1343-51. PubMed ID: 14756571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triplex formation on DNA targets: how to choose the oligonucleotide.
    Vekhoff P; Ceccaldi A; Polverari D; Pylouster J; Pisano C; Arimondo PB
    Biochemistry; 2008 Nov; 47(47):12277-89. PubMed ID: 18954091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and evaluation of a triplex-forming oligonucleotide-pyrrolobenzodiazepine conjugate.
    Zhilina ZV; Ziemba AJ; Trent JO; Reed MW; Gorn V; Zhou Q; Duan W; Hurley L; Ebbinghaus SW
    Bioconjug Chem; 2004; 15(6):1182-92. PubMed ID: 15546183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antigene and antiproliferative effects of a c-myc-targeting phosphorothioate triple helix-forming oligonucleotide in human leukemia cells.
    McGuffie EM; Pacheco D; Carbone GM; Catapano CV
    Cancer Res; 2000 Jul; 60(14):3790-9. PubMed ID: 10919652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stem-loop oligonucleotides as tools for labelling double-stranded DNA.
    Géron-Landre B; Roulon T; Escudé C
    FEBS J; 2005 Oct; 272(20):5343-52. PubMed ID: 16218964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA binding and antigene activity of a daunomycin-conjugated triplex-forming oligonucleotide targeting the P2 promoter of the human c-myc gene.
    Carbone GM; McGuffie E; Napoli S; Flanagan CE; Dembech C; Negri U; Arcamone F; Capobianco ML; Catapano CV
    Nucleic Acids Res; 2004; 32(8):2396-410. PubMed ID: 15121897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of triple helical DNA by a benzopyridoquinoxaline intercalator.
    Marchand C; Bailly C; Nguyen CH; Bisagni E; Garestier T; Hélène C; Waring MJ
    Biochemistry; 1996 Apr; 35(15):5022-32. PubMed ID: 8664295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence and pH effects of LNA-containing triple helix-forming oligonucleotides: physical chemistry, biochemistry, and modeling studies.
    Sun BW; Babu BR; Sørensen MD; Zakrzewska K; Wengel J; Sun JS
    Biochemistry; 2004 Apr; 43(14):4160-9. PubMed ID: 15065859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed inhibition of DNA replication by triple helix formation.
    Diviacco S; Rapozzi V; Xodo L; Helene C; Quadrifoglio F; Giovannangeli C
    FASEB J; 2001 Dec; 15(14):2660-8. PubMed ID: 11726542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antigene-block strategy: effective regulation of gene expression by 2',4'-BNA-modified TFOs with an additional stem-loop structure.
    Tsuda N; Matsumoto A; Ito A; Uneda T; Tanabe A; Obika S; Imanishi T
    Nucleic Acids Symp Ser (Oxf); 2005; (49):335-6. PubMed ID: 17150770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutagenesis mediated by triple helix-forming oligonucleotides conjugated to psoralen: effects of linker arm length and sequence context.
    Raha M; Lacroix L; Glazer PM
    Photochem Photobiol; 1998 Mar; 67(3):289-94. PubMed ID: 9523530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bis-alkylating triplex forming oligonucleotide inhibits intracellular reporter gene expression and prevents triplex unwinding due to helicase activity.
    Ziemba AJ; Reed MW; Raney KD; Byrd AB; Ebbinghaus SW
    Biochemistry; 2003 May; 42(17):5013-24. PubMed ID: 12718544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved synthesis of daunomycin conjugates with triplex-forming oligonucleotides. The polypurine tract of HIV-1 as a target.
    Capobianco ML; De Champdoré M; Arcamone F; Garbesi A; Guianvarc'h D; B Arimondo P
    Bioorg Med Chem; 2005 May; 13(9):3209-18. PubMed ID: 15809156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring triplex DNA formation with fluorescence resonance energy transfer between a fluorophore-labeled probe and intercalating dyes.
    Chiou CC; Chen SW; Luo JD; Chien YT
    Anal Biochem; 2011 Sep; 416(1):1-7. PubMed ID: 21609711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.