These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 15328697)
1. Effect of operating conditions on the separation of ammonium and nitrate ions with nanofiltration and reverse osmosis membranes. Koyuncu I J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Aug; 37(7):1347-59. PubMed ID: 15328697 [TBL] [Abstract][Full Text] [Related]
2. Application of nanofiltration and reverse osmosis membranes to the salty and polluted surface water. Koyuncu I; Yazgan M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(7):1321-33. PubMed ID: 11545356 [TBL] [Abstract][Full Text] [Related]
3. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Xu P; Drewes JE; Bellona C; Amy G; Kim TU; Adam M; Heberer T Water Environ Res; 2005; 77(1):40-8. PubMed ID: 15765934 [TBL] [Abstract][Full Text] [Related]
4. Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilot-scale study. Bellona C; Drewes JE Water Res; 2007 Sep; 41(17):3948-58. PubMed ID: 17582458 [TBL] [Abstract][Full Text] [Related]
5. Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes. Sanyal O; Lee I J Nanosci Nanotechnol; 2014 Mar; 14(3):2178-89. PubMed ID: 24745210 [TBL] [Abstract][Full Text] [Related]
6. Effect of cross flow velocity, feed concentration, and pressure on the salt rejection of nanofiltration membranes in reactive dye having two sodium salts and NaCl mixtures: model application. Koyuncu I; Topacik D J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(4):1055-68. PubMed ID: 15137719 [TBL] [Abstract][Full Text] [Related]
7. Comparing the performance of various nanofiltration membranes in advanced oxidation-nanofiltration treatment of reverse osmosis concentrates. Li N; Wang X; Zhang H; Zhang Z; Ding J; Lu J Environ Sci Pollut Res Int; 2019 Jun; 26(17):17472-17481. PubMed ID: 31020525 [TBL] [Abstract][Full Text] [Related]
8. Rejection of organic compounds by ultra-low pressure reverse osmosis membrane. Ozaki H; Li H Water Res; 2002 Jan; 36(1):123-30. PubMed ID: 11766787 [TBL] [Abstract][Full Text] [Related]
9. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Yoon J; Amy G; Chung J; Sohn J; Yoon Y Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331 [TBL] [Abstract][Full Text] [Related]
10. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents. Turan M; Ates A; Inanc B Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123 [TBL] [Abstract][Full Text] [Related]
11. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. Yüksel S; Kabay N; Yüksel M J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784 [TBL] [Abstract][Full Text] [Related]
12. Effects of water matrix on the rejection of neutral pharmaceutically active compound by thin-film composite nanofiltration and reverse osmosis membranes. Shah IA; Ali S; Yang Z; Ihsanullah I; Huang H Chemosphere; 2022 Sep; 303(Pt 3):135211. PubMed ID: 35660049 [TBL] [Abstract][Full Text] [Related]
13. Reverse osmosis filtration for space mission wastewater: membrane properties and operating conditions. Lee S; Lueptow RM J Memb Sci; 2001 Feb; 182(1-2):77-90. PubMed ID: 11594378 [TBL] [Abstract][Full Text] [Related]
14. Nutrient removal by NF and RO membranes in a decentralized sanitation system. van Voorthuizen EM; Zwijnenburg A; Wessling M Water Res; 2005 Sep; 39(15):3657-67. PubMed ID: 16054670 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of commercial nanofiltration and reverse osmosis membrane filtration to remove per-and polyfluoroalkyl substances (PFAS): Effects of transmembrane pressures and water matrices. Ma Q; Lei Q; Liu F; Song Z; Khusid B; Zhang W Water Environ Res; 2024 Feb; 96(2):e10983. PubMed ID: 38291820 [TBL] [Abstract][Full Text] [Related]
16. Membrane filtration for tertiary treatment of biologically treated effluents from the pulp and paper industry. Mänttäri M; Nyström M Water Sci Technol; 2007; 55(6):99-107. PubMed ID: 17486840 [TBL] [Abstract][Full Text] [Related]
17. The application of membrane filtration for the removal of ammonium ions from potable water. Kurama H; Poetzschke J; Haseneder R Water Res; 2002 Jun; 36(11):2905-9. PubMed ID: 12146880 [TBL] [Abstract][Full Text] [Related]
18. Membrane technology applied to acid mine drainage from copper mining. Ambiado K; Bustos C; Schwarz A; Bórquez R Water Sci Technol; 2017 Feb; 75(3-4):705-715. PubMed ID: 28192364 [TBL] [Abstract][Full Text] [Related]
19. Experimental and economic evaluation of nitrate removal by a nanofiltration membrane. Alavijeh HN; Sadeghi M; Ghahremanfard A Environ Sci Pollut Res Int; 2023 Mar; 30(14):40783-40798. PubMed ID: 36622606 [TBL] [Abstract][Full Text] [Related]
20. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes. Dolar D; Vuković A; Asperger D; Kosutić K J Environ Sci (China); 2011; 23(8):1299-307. PubMed ID: 22128537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]