These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 15328697)
21. Nitrate removal from groundwater using negatively charged nanofiltration membrane. Zou L; Zhang S; Liu J; Cao Y; Qian G; Li YY; Xu ZP Environ Sci Pollut Res Int; 2019 Nov; 26(33):34197-34204. PubMed ID: 30515691 [TBL] [Abstract][Full Text] [Related]
22. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Kheriji J; Tabassi D; Hamrouni B Water Sci Technol; 2015; 72(7):1206-16. PubMed ID: 26398037 [TBL] [Abstract][Full Text] [Related]
23. Removal of organic contaminants by RO and NF membranes. Yoon Y; Lueptow RM J Memb Sci; 2005 Sep; 261(1-2):76-86. PubMed ID: 16134262 [TBL] [Abstract][Full Text] [Related]
24. Response surface methodology and artificial neural network modelling for the performance evaluation of pilot-scale hybrid nanofiltration (NF) & reverse osmosis (RO) membrane system for the treatment of brackish ground water. Srivastava A; K A; Nair A; Ram S; Agarwal S; Ali J; Singh R; Garg MC J Environ Manage; 2021 Jan; 278(Pt 1):111497. PubMed ID: 33130432 [TBL] [Abstract][Full Text] [Related]
25. Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes. Hoek EM; Elimelech M Environ Sci Technol; 2003 Dec; 37(24):5581-8. PubMed ID: 14717167 [TBL] [Abstract][Full Text] [Related]
26. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Tang CY; Fu QS; Criddle CS; Leckie JO Environ Sci Technol; 2007 Mar; 41(6):2008-14. PubMed ID: 17410798 [TBL] [Abstract][Full Text] [Related]
27. Removal of pharmaceutically active compounds from water sources using nanofiltration and reverse osmosis membranes: Comparison of removal efficiencies and in-depth analysis of rejection mechanisms. Matin A; Jillani SMS; Baig U; Ihsanullah I; Alhooshani K J Environ Manage; 2023 Jul; 338():117682. PubMed ID: 37003228 [TBL] [Abstract][Full Text] [Related]
28. Potential of nanofiltration and low pressure reverse osmosis in the removal of phosphorus for aquaculture. Leo CP; Yahya MZ; Kamal SN; Ahmad AL; Mohammad AW Water Sci Technol; 2013; 67(4):831-7. PubMed ID: 23306262 [TBL] [Abstract][Full Text] [Related]
29. Modeling the effect of charge density in the active layers of reverse osmosis and nanofiltration membranes on the rejection of arsenic(III) and potassium iodide. Coronell O; Mi B; Mariñas BJ; Cahill DG Environ Sci Technol; 2013 Jan; 47(1):420-8. PubMed ID: 23199291 [TBL] [Abstract][Full Text] [Related]
30. Removal of micropollutants from water by commercially available nanofiltration membranes. Cuhorka J; Wallace E; Mikulášek P Sci Total Environ; 2020 Jun; 720():137474. PubMed ID: 32325567 [TBL] [Abstract][Full Text] [Related]
31. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Nataraj SK; Hosamani KM; Aminabhavi TM Water Res; 2006 Jul; 40(12):2349-56. PubMed ID: 16757012 [TBL] [Abstract][Full Text] [Related]
32. Use of fouling resistant nanofiltration and reverse osmosis membranes for dyeing wastewater effluent treatment. Myung SW; Choi IH; Lee SH; Kim IC; Lee KH Water Sci Technol; 2005; 51(6-7):159-64. PubMed ID: 16003974 [TBL] [Abstract][Full Text] [Related]
33. Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis. Shen J; Schäfer AI Sci Total Environ; 2015 Sep; 527-528():520-9. PubMed ID: 26005995 [TBL] [Abstract][Full Text] [Related]
34. Experimental study of water and salt fluxes through reverse osmosis membranes. Zhou W; Song L Environ Sci Technol; 2005 May; 39(9):3382-7. PubMed ID: 15926593 [TBL] [Abstract][Full Text] [Related]
35. Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater. Gwon EM; Yu MJ; Oh HK; Ylee YH Water Res; 2003 Jul; 37(12):2989-97. PubMed ID: 12767302 [TBL] [Abstract][Full Text] [Related]
36. Rejection of micropollutants by clean and fouled forward osmosis membrane. Valladares Linares R; Yangali-Quintanilla V; Li Z; Amy G Water Res; 2011 Dec; 45(20):6737-44. PubMed ID: 22055122 [TBL] [Abstract][Full Text] [Related]
37. Rejection efficiency of water quality parameters by reverse osmosis and nanofiltration membranes. Peng W; Escobar IC Environ Sci Technol; 2003 Oct; 37(19):4435-41. PubMed ID: 14572097 [TBL] [Abstract][Full Text] [Related]
38. Hydrogen-based tubular catalytic membrane for removing nitrate from groundwater. Chen YX; Zhang Y; Liu HY; Sharma KR; Chen GH Environ Technol; 2004 Feb; 25(2):227-34. PubMed ID: 15116881 [TBL] [Abstract][Full Text] [Related]
39. A systematic approach towards optimization of brackish groundwater treatment using nanofiltration (NF) and reverse osmosis (RO) hybrid membrane filtration system. Srivastava A; Singh R; Rajput VD; Minkina T; Agarwal S; Garg MC Chemosphere; 2022 Sep; 303(Pt 3):135230. PubMed ID: 35688189 [TBL] [Abstract][Full Text] [Related]
40. Removal of manganese from water using combined chelation/membrane separation systems. Han SC; Choo KH; Choi SJ; Benjamin MM Water Sci Technol; 2005; 51(6-7):349-55. PubMed ID: 16003996 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]