These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 15328891)

  • 1. Resonance energy transfer between tryptophan-214 in human serum albumin and acrylodan, prodan, and promen.
    González-Jiménez J; Cortijo M
    Protein J; 2004 Jul; 23(5):351-5. PubMed ID: 15328891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial relationship between the prodan site, Trp-214, and Cys-34 residues in human serum albumin and loss of structure through incremental unfolding.
    Krishnakumar SS; Panda D
    Biochemistry; 2002 Jun; 41(23):7443-52. PubMed ID: 12044178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of the Promen fluorescent probe to human serum albumin: a fluorescence spectroscopic study.
    Moreno F; González-Jiménez J
    Chem Biol Interact; 1999 Aug; 121(3):237-52. PubMed ID: 10462056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interaction of 6-propionyl-2-(NN-dimethyl)aminonaphthalene (PRODAN)-labelled actin with actin-binding proteins and drugs.
    Zechel K
    Biochem J; 1993 Mar; 290 ( Pt 2)(Pt 2):411-7. PubMed ID: 8452529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence quenching of (dimethylamino)naphthalene dyes Badan and Prodan by tryptophan in cytochromes P450 and micelles.
    Pospíšil P; Luxem KE; Ener M; Sýkora J; Kocábová J; Gray HB; Vlček A; Hof M
    J Phys Chem B; 2014 Aug; 118(34):10085-91. PubMed ID: 25079965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of novel PRODAN-labeled nucleosides as base-discriminating fluorescent probes.
    Tainaka K; Ikeda S; Tanaka K; Nishiza K; Fujiwara Y; Okamoto A; Saito I
    Nucleic Acids Symp Ser (Oxf); 2006; (50):133-4. PubMed ID: 17150853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of acrylodan with human serum albumin. A fluorescence spectroscopic study.
    Moreno F; Cortijo M; González-Jiménez J
    Photochem Photobiol; 1999 Nov; 70(5):695-700. PubMed ID: 10568165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of acrylodan-labeled bovine and human serum albumin sequestered within aerosol-OT reverse micelles.
    Lundgren JS; Heitz MP; Bright FV
    Anal Chem; 1995 Oct; 67(20):3775-81. PubMed ID: 8644923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urea-induced denaturation of human serum albumin labeled with acrylodan.
    González-Jiménez J; Cortijo M
    J Protein Chem; 2002 Feb; 21(2):75-9. PubMed ID: 11934277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the cysteine 34 residue in human serum albumin using fluorescence techniques.
    Narazaki R; Maruyama T; Otagiri M
    Biochim Biophys Acta; 1997 Apr; 1338(2):275-81. PubMed ID: 9128146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Prodan with tubulin. A fluorescence spectroscopic study.
    Mazumdar M; Parrack PK; Bhattacharyya B
    Eur J Biochem; 1992 Feb; 204(1):127-32. PubMed ID: 1740122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accessibility of the fluorescent reporter group in native, silica-adsorbed, and covalently attached acrylodan-labeled serum albumins.
    Ingersoll CM; Jordan JD; Bright FV
    Anal Chem; 1996 Sep; 68(18):3194-8. PubMed ID: 8797379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prodan fluorescence reflects differences in nucleotide-induced conformational states in the myosin head and allows continuous visualization of the ATPase reactions.
    Hiratsuka T
    Biochemistry; 1998 May; 37(20):7167-76. PubMed ID: 9585528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods.
    Flora K; Brennan JD; Baker GA; Doody MA; Bright FV
    Biophys J; 1998 Aug; 75(2):1084-96. PubMed ID: 9675210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of N-B transition on the microenvironment surrounding 34Cys in human serum albumin.
    Narazaki R; Maruyama T; Otagiri M
    Biol Pharm Bull; 1997 Apr; 20(4):452-4. PubMed ID: 9145230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Usefulness of Fluorescent Probe Prodan To Gain Insight into the Polarity of Plant Cuticles.
    Stawinoga M; Sleiman M; Chastain J; Richard C
    J Agric Food Chem; 2015 Aug; 63(31):6932-8. PubMed ID: 26197715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel 7-(dimethylamino)fluorene-based fluorescent probes and their binding to human serum albumin.
    Park KK; Park JW; Hamilton AD
    Org Biomol Chem; 2009 Oct; 7(20):4225-32. PubMed ID: 19795061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of prodan-phosphatidylcholine, a new fluorescent probe, and its interactions with pancreatic and snake venom phospholipases A2.
    Hendrickson HS; Dumdei EJ; Batchelder AG; Carlson GL
    Biochemistry; 1987 Jun; 26(12):3697-703. PubMed ID: 3651404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Analysis of log-normal components of fluorescence spectra of prodan and acrylodan bound to proteins].
    Emel'ianenko VI; Reshetniak IaK; Andreev OA; Burshteĭn EA
    Biofizika; 2000; 45(2):207-19. PubMed ID: 10776530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of spectral heterogeneity of prodan and laurdan solutions on the transfer of electronic energy to octadecyl rhodamine B.
    Kozyra KA; Heldt JR; Heldt J
    Biophys Chem; 2006 Apr; 121(1):57-64. PubMed ID: 16443320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.