These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 15328977)
21. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil. Kim SH; Lee IS Bull Environ Contam Toxicol; 2010 Feb; 84(2):255-9. PubMed ID: 19806283 [TBL] [Abstract][Full Text] [Related]
22. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Gupta AK; Sinha S Chemosphere; 2006 Jun; 64(1):161-73. PubMed ID: 16330080 [TBL] [Abstract][Full Text] [Related]
23. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil. Salati S; Quadri G; Tambone F; Adani F Environ Pollut; 2010 May; 158(5):1899-906. PubMed ID: 19932537 [TBL] [Abstract][Full Text] [Related]
24. Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid, and compost. Yang XE; Peng HY; Jiang LY; He ZL Int J Phytoremediation; 2005; 7(1):69-83. PubMed ID: 15943245 [TBL] [Abstract][Full Text] [Related]
25. Nitrilotriacetate- and citric acid-assisted phytoextraction of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae). Quartacci MF; Baker AJ; Navari-Izzo F Chemosphere; 2005 Jun; 59(9):1249-55. PubMed ID: 15857636 [TBL] [Abstract][Full Text] [Related]
26. Effects of chelators on chromium and nickel uptake by Brassica juncea on serpentine-mine tailings for phytoextraction. Hsiao KH; Kao PH; Hseu ZY J Hazard Mater; 2007 Sep; 148(1-2):366-76. PubMed ID: 17391842 [TBL] [Abstract][Full Text] [Related]
27. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chen Y; Li X; Shen Z Chemosphere; 2004 Oct; 57(3):187-96. PubMed ID: 15312735 [TBL] [Abstract][Full Text] [Related]
28. Solubility and accumulation of metals in Chinese brake fern, vetiver and rostrate sesbania using chelating agents. Lou LQ; Ye ZH; Wong MH Int J Phytoremediation; 2007; 9(4):325-43. PubMed ID: 18246709 [TBL] [Abstract][Full Text] [Related]
29. Effects of IDSA, EDDS and EDTA on heavy metals accumulation in hydroponically grown maize (Zea mays, L.). Zhao Z; Xi M; Jiang G; Liu X; Bai Z; Huang Y J Hazard Mater; 2010 Sep; 181(1-3):455-9. PubMed ID: 20627568 [TBL] [Abstract][Full Text] [Related]
30. Comparison of natural humic substances and synthetic ethylenediaminetetraacetic acid and nitrilotriacetic acid as washing agents of a heavy metal-polluted soil. Soleimani M; Hajabbasi MA; Afyuni M; Akbar S; Jensen JK; Holm PE; Borggaard OK J Environ Qual; 2010; 39(3):855-62. PubMed ID: 20400581 [TBL] [Abstract][Full Text] [Related]
31. Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Quartacci MF; Argilla A; Baker AJ; Navari-Izzo F Chemosphere; 2006 May; 63(6):918-25. PubMed ID: 16307777 [TBL] [Abstract][Full Text] [Related]
32. Role of EDTA in arsenic mobilization and its uptake by maize grown on an As-polluted soil. Abbas MH; Abdelhafez AA Chemosphere; 2013 Jan; 90(2):588-94. PubMed ID: 22990024 [TBL] [Abstract][Full Text] [Related]
33. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Komárek M; Tlustos P; Száková J; Chrastný V; Ettler V Chemosphere; 2007 Mar; 67(4):640-51. PubMed ID: 17184814 [TBL] [Abstract][Full Text] [Related]
34. Transient phytoextraction agents: establishing criteria for the use of chelants in phytoextraction of recalcitrant metals. Parra R; Ulery AL; Elless MP; Blaylock MJ Int J Phytoremediation; 2008; 10(5):415-29. PubMed ID: 19260223 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Evangelou MW; Ebel M; Schaeffer A Chemosphere; 2006 May; 63(6):996-1004. PubMed ID: 16337259 [TBL] [Abstract][Full Text] [Related]
36. Heavy metal extraction from an artificially contaminated sandy soil under EDDS deficiency: significance of humic acid and chelant mixture. Yip TC; Yan DY; Yui MM; Tsang DC; Lo IM Chemosphere; 2010 Jun; 80(4):416-21. PubMed ID: 20427074 [TBL] [Abstract][Full Text] [Related]
37. The role of chloride salts in chemically enhanced phytoextraction of heavy metals from a contaminated agricultural soil. Komárek M; Tlustos P; Száková J; Chrastný V Bull Environ Contam Toxicol; 2007 Feb; 78(2):176-80. PubMed ID: 17401509 [No Abstract] [Full Text] [Related]
38. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Evangelou MW; Ebel M; Schaeffer A Chemosphere; 2007 Jun; 68(6):989-1003. PubMed ID: 17349677 [TBL] [Abstract][Full Text] [Related]
39. EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania. Suthar V; Memon KS; Mahmood-ul-Hassan M Environ Monit Assess; 2014 Jun; 186(6):3957-68. PubMed ID: 24515546 [TBL] [Abstract][Full Text] [Related]
40. Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain. Lu Y; Luo D; Lai A; Liu G; Liu L; Long J; Zhang H; Chen Y Environ Sci Pollut Res Int; 2017 Jan; 24(2):1845-1853. PubMed ID: 27796994 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]