BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 15329155)

  • 1. Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent.
    Selvaraj A; Prywes R
    BMC Mol Biol; 2004 Aug; 5():13. PubMed ID: 15329155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression.
    Cen B; Selvaraj A; Prywes R
    J Cell Biochem; 2004 Sep; 93(1):74-82. PubMed ID: 15352164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes.
    Cen B; Selvaraj A; Burgess RC; Hitzler JK; Ma Z; Morris SW; Prywes R
    Mol Cell Biol; 2003 Sep; 23(18):6597-608. PubMed ID: 12944485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Megakaryoblastic leukemia-1/2, a transcriptional co-activator of serum response factor, is required for skeletal myogenic differentiation.
    Selvaraj A; Prywes R
    J Biol Chem; 2003 Oct; 278(43):41977-87. PubMed ID: 14565952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Megakaryoblastic leukemia factor-1 transduces cytoskeletal signals and induces smooth muscle cell differentiation from undifferentiated embryonic stem cells.
    Du KL; Chen M; Li J; Lepore JJ; Mericko P; Parmacek MS
    J Biol Chem; 2004 Apr; 279(17):17578-86. PubMed ID: 14970199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation and repression of cellular immediate early genes by serum response factor cofactors.
    Lee SM; Vasishtha M; Prywes R
    J Biol Chem; 2010 Jul; 285(29):22036-49. PubMed ID: 20466732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel role of Brg1 in the regulation of SRF/MRTFA-dependent smooth muscle-specific gene expression.
    Zhang M; Fang H; Zhou J; Herring BP
    J Biol Chem; 2007 Aug; 282(35):25708-16. PubMed ID: 17599918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs).
    Morita T; Mayanagi T; Sobue K
    Exp Cell Res; 2007 Oct; 313(16):3432-45. PubMed ID: 17714703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AKAP12alpha, an atypical serum response factor-dependent target gene.
    Streb JW; Miano JM
    J Biol Chem; 2005 Feb; 280(6):4125-34. PubMed ID: 15590635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase.
    Hanna M; Liu H; Amir J; Sun Y; Morris SW; Siddiqui MA; Lau LF; Chaqour B
    J Biol Chem; 2009 Aug; 284(34):23125-36. PubMed ID: 19542562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of SRF-dependent gene expression by association of SPT16 with MKL1.
    Kihara T; Kano F; Murata M
    Exp Cell Res; 2008 Feb; 314(3):629-37. PubMed ID: 18036521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The myocardin-related transcription factor MKL co-regulates the cellular levels of two profilin isoforms.
    Joy M; Gau D; Castellucci N; Prywes R; Roy P
    J Biol Chem; 2017 Jul; 292(28):11777-11791. PubMed ID: 28546428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression.
    Wang Z; Wang DZ; Hockemeyer D; McAnally J; Nordheim A; Olson EN
    Nature; 2004 Mar; 428(6979):185-9. PubMed ID: 15014501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of SRF coactivator MKL2 in BDNF-mediated activation of the synaptic activity-responsive element in the Arc gene.
    Kikuchi K; Ihara D; Fukuchi M; Tanabe H; Ishibashi Y; Tsujii J; Tsuda M; Kaneda M; Sakagami H; Okuno H; Bito H; Yamazaki Y; Ishikawa M; Tabuchi A
    J Neurochem; 2019 Jan; 148(2):204-218. PubMed ID: 30244496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RhoA GTPase and serum response factor control selectively the expression of MyoD without affecting Myf5 in mouse myoblasts.
    Carnac G; Primig M; Kitzmann M; Chafey P; Tuil D; Lamb N; Fernandez A
    Mol Biol Cell; 1998 Jul; 9(7):1891-902. PubMed ID: 9658178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actin dynamics control SRF activity by regulation of its coactivator MAL.
    Miralles F; Posern G; Zaromytidou AI; Treisman R
    Cell; 2003 May; 113(3):329-42. PubMed ID: 12732141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SRF Co-factors Control the Balance between Cell Proliferation and Contractility.
    Gualdrini F; Esnault C; Horswell S; Stewart A; Matthews N; Treisman R
    Mol Cell; 2016 Dec; 64(6):1048-1061. PubMed ID: 27867007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Dendritic Synaptic Morphology and Transcription by the SRF Cofactor MKL/MRTF.
    Tabuchi A; Ihara D
    Front Mol Neurosci; 2021; 14():767842. PubMed ID: 34795561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ternary complex factor-serum response factor complex-regulated gene activity is required for cellular proliferation and inhibition of apoptotic cell death.
    Vickers ER; Kasza A; Kurnaz IA; Seifert A; Zeef LA; O'donnell A; Hayes A; Sharrocks AD
    Mol Cell Biol; 2004 Dec; 24(23):10340-51. PubMed ID: 15542842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF.
    Philippar U; Schratt G; Dieterich C; Müller JM; Galgóczy P; Engel FB; Keating MT; Gertler F; Schüle R; Vingron M; Nordheim A
    Mol Cell; 2004 Dec; 16(6):867-80. PubMed ID: 15610731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.