These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 15329155)

  • 1. Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent.
    Selvaraj A; Prywes R
    BMC Mol Biol; 2004 Aug; 5():13. PubMed ID: 15329155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression.
    Cen B; Selvaraj A; Prywes R
    J Cell Biochem; 2004 Sep; 93(1):74-82. PubMed ID: 15352164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes.
    Cen B; Selvaraj A; Burgess RC; Hitzler JK; Ma Z; Morris SW; Prywes R
    Mol Cell Biol; 2003 Sep; 23(18):6597-608. PubMed ID: 12944485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Megakaryoblastic leukemia-1/2, a transcriptional co-activator of serum response factor, is required for skeletal myogenic differentiation.
    Selvaraj A; Prywes R
    J Biol Chem; 2003 Oct; 278(43):41977-87. PubMed ID: 14565952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Megakaryoblastic leukemia factor-1 transduces cytoskeletal signals and induces smooth muscle cell differentiation from undifferentiated embryonic stem cells.
    Du KL; Chen M; Li J; Lepore JJ; Mericko P; Parmacek MS
    J Biol Chem; 2004 Apr; 279(17):17578-86. PubMed ID: 14970199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation and repression of cellular immediate early genes by serum response factor cofactors.
    Lee SM; Vasishtha M; Prywes R
    J Biol Chem; 2010 Jul; 285(29):22036-49. PubMed ID: 20466732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel role of Brg1 in the regulation of SRF/MRTFA-dependent smooth muscle-specific gene expression.
    Zhang M; Fang H; Zhou J; Herring BP
    J Biol Chem; 2007 Aug; 282(35):25708-16. PubMed ID: 17599918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs).
    Morita T; Mayanagi T; Sobue K
    Exp Cell Res; 2007 Oct; 313(16):3432-45. PubMed ID: 17714703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AKAP12alpha, an atypical serum response factor-dependent target gene.
    Streb JW; Miano JM
    J Biol Chem; 2005 Feb; 280(6):4125-34. PubMed ID: 15590635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase.
    Hanna M; Liu H; Amir J; Sun Y; Morris SW; Siddiqui MA; Lau LF; Chaqour B
    J Biol Chem; 2009 Aug; 284(34):23125-36. PubMed ID: 19542562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of SRF-dependent gene expression by association of SPT16 with MKL1.
    Kihara T; Kano F; Murata M
    Exp Cell Res; 2008 Feb; 314(3):629-37. PubMed ID: 18036521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The myocardin-related transcription factor MKL co-regulates the cellular levels of two profilin isoforms.
    Joy M; Gau D; Castellucci N; Prywes R; Roy P
    J Biol Chem; 2017 Jul; 292(28):11777-11791. PubMed ID: 28546428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression.
    Wang Z; Wang DZ; Hockemeyer D; McAnally J; Nordheim A; Olson EN
    Nature; 2004 Mar; 428(6979):185-9. PubMed ID: 15014501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of SRF coactivator MKL2 in BDNF-mediated activation of the synaptic activity-responsive element in the Arc gene.
    Kikuchi K; Ihara D; Fukuchi M; Tanabe H; Ishibashi Y; Tsujii J; Tsuda M; Kaneda M; Sakagami H; Okuno H; Bito H; Yamazaki Y; Ishikawa M; Tabuchi A
    J Neurochem; 2019 Jan; 148(2):204-218. PubMed ID: 30244496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RhoA GTPase and serum response factor control selectively the expression of MyoD without affecting Myf5 in mouse myoblasts.
    Carnac G; Primig M; Kitzmann M; Chafey P; Tuil D; Lamb N; Fernandez A
    Mol Biol Cell; 1998 Jul; 9(7):1891-902. PubMed ID: 9658178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actin dynamics control SRF activity by regulation of its coactivator MAL.
    Miralles F; Posern G; Zaromytidou AI; Treisman R
    Cell; 2003 May; 113(3):329-42. PubMed ID: 12732141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SRF Co-factors Control the Balance between Cell Proliferation and Contractility.
    Gualdrini F; Esnault C; Horswell S; Stewart A; Matthews N; Treisman R
    Mol Cell; 2016 Dec; 64(6):1048-1061. PubMed ID: 27867007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Dendritic Synaptic Morphology and Transcription by the SRF Cofactor MKL/MRTF.
    Tabuchi A; Ihara D
    Front Mol Neurosci; 2021; 14():767842. PubMed ID: 34795561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ternary complex factor-serum response factor complex-regulated gene activity is required for cellular proliferation and inhibition of apoptotic cell death.
    Vickers ER; Kasza A; Kurnaz IA; Seifert A; Zeef LA; O'donnell A; Hayes A; Sharrocks AD
    Mol Cell Biol; 2004 Dec; 24(23):10340-51. PubMed ID: 15542842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF.
    Philippar U; Schratt G; Dieterich C; Müller JM; Galgóczy P; Engel FB; Keating MT; Gertler F; Schüle R; Vingron M; Nordheim A
    Mol Cell; 2004 Dec; 16(6):867-80. PubMed ID: 15610731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.