These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 15329401)

  • 1. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency.
    Izquierdo A; Suda RK; Murray EA
    J Neurosci; 2004 Aug; 24(34):7540-8. PubMed ID: 15329401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined unilateral lesions of the amygdala and orbital prefrontal cortex impair affective processing in rhesus monkeys.
    Izquierdo A; Murray EA
    J Neurophysiol; 2004 May; 91(5):2023-39. PubMed ID: 14711973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of amygdala, orbital prefrontal cortex, and prelimbic cortex lesions on goal-directed behavior in rhesus macaques.
    Rhodes SE; Murray EA
    J Neurosci; 2013 Feb; 33(8):3380-9. PubMed ID: 23426666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhesus monkeys with orbital prefrontal cortex lesions can learn to inhibit prepotent responses in the reversed reward contingency task.
    Chudasama Y; Kralik JD; Murray EA
    Cereb Cortex; 2007 May; 17(5):1154-9. PubMed ID: 16774961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interaction of medial mediodorsal thalamic nucleus but not nucleus accumbens with amygdala and orbital prefrontal cortex is essential for adaptive response selection after reinforcer devaluation.
    Izquierdo A; Murray EA
    J Neurosci; 2010 Jan; 30(2):661-9. PubMed ID: 20071531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning.
    Izquierdo A; Murray EA
    J Neurosci; 2007 Jan; 27(5):1054-62. PubMed ID: 17267559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociable effects of subtotal lesions within the macaque orbital prefrontal cortex on reward-guided behavior.
    Rudebeck PH; Murray EA
    J Neurosci; 2011 Jul; 31(29):10569-78. PubMed ID: 21775601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotoxic lesions of the medial mediodorsal nucleus of the thalamus disrupt reinforcer devaluation effects in rhesus monkeys.
    Mitchell AS; Browning PG; Baxter MG
    J Neurosci; 2007 Oct; 27(42):11289-95. PubMed ID: 17942723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of selective amygdala, orbital frontal cortex or hippocampal formation lesions on reward assessment in nonhuman primates.
    Machado CJ; Bachevalier J
    Eur J Neurosci; 2007 May; 25(9):2885-904. PubMed ID: 17561849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys.
    Izquierdo A; Suda RK; Murray EA
    J Neurosci; 2005 Sep; 25(37):8534-42. PubMed ID: 16162935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ventrolateral prefrontal cortex is required for performance of a strategy implementation task but not reinforcer devaluation effects in rhesus monkeys.
    Baxter MG; Gaffan D; Kyriazis DA; Mitchell AS
    Eur J Neurosci; 2009 May; 29(10):2049-59. PubMed ID: 19453635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the anterior cingulate cortex in choices based on reward value and reward contingency.
    Chudasama Y; Daniels TE; Gorrin DP; Rhodes SE; Rudebeck PH; Murray EA
    Cereb Cortex; 2013 Dec; 23(12):2884-98. PubMed ID: 22944530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhinal cortex ablations fail to disrupt reinforcer devaluation effects in rhesus monkeys (Macaca mulatta).
    Thornton JA; Malkova L; Murray EA
    Behav Neurosci; 1998 Aug; 112(4):1020-5. PubMed ID: 9733208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex.
    Baxter MG; Parker A; Lindner CC; Izquierdo AD; Murray EA
    J Neurosci; 2000 Jun; 20(11):4311-9. PubMed ID: 10818166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring reward assessment in a semi-naturalistic context: the effects of selective amygdala, orbital frontal or hippocampal lesions.
    Machado CJ; Bachevalier J
    Neuroscience; 2007 Sep; 148(3):599-611. PubMed ID: 17693034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys.
    Málková L; Gaffan D; Murray EA
    J Neurosci; 1997 Aug; 17(15):6011-20. PubMed ID: 9221797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Orbitofrontal-Amygdala Interactions in Updating Action-Outcome Valuations in Macaques.
    Fiuzat EC; Rhodes SE; Murray EA
    J Neurosci; 2017 Mar; 37(9):2463-2470. PubMed ID: 28148725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans.
    Hornak J; O'Doherty J; Bramham J; Rolls ET; Morris RG; Bullock PR; Polkey CE
    J Cogn Neurosci; 2004 Apr; 16(3):463-78. PubMed ID: 15072681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient inactivation of orbitofrontal cortex blocks reinforcer devaluation in macaques.
    West EA; DesJardin JT; Gale K; Malkova L
    J Neurosci; 2011 Oct; 31(42):15128-35. PubMed ID: 22016546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orbital prefrontal cortex is required for object-in-place scene memory but not performance of a strategy implementation task.
    Baxter MG; Gaffan D; Kyriazis DA; Mitchell AS
    J Neurosci; 2007 Oct; 27(42):11327-33. PubMed ID: 17942727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.