BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 15329882)

  • 1. Quantification of hydrogen cyanide in humid air by selected ion flow tube mass spectrometry.
    Spanĕl P; Wang T; Smith D
    Rapid Commun Mass Spectrom; 2004; 18(16):1869-73. PubMed ID: 15329882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of water vapour on selected ion flow tube mass spectrometric analyses of trace gases in humid air and breath.
    Spanĕl P; Smith D
    Rapid Commun Mass Spectrom; 2000; 14(20):1898-906. PubMed ID: 11013418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry.
    Smith D; Pysanenko A; Spanel P
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1419-25. PubMed ID: 19347971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.
    Dryahina K; Smith D; Spanel P
    Rapid Commun Mass Spectrom; 2010 May; 24(9):1296-304. PubMed ID: 20391601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of hydrogen sulphide in humid air by selected ion flow tube mass spectrometry.
    Spanel P; Smith D
    Rapid Commun Mass Spectrom; 2000; 14(13):1136-40. PubMed ID: 10867689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The analysis of 1-propanol and 2-propanol in humid air samples using selected ion flow tube mass spectrometry.
    Wang T; Carroll W; Lenny W; Boit P; Smith D
    Rapid Commun Mass Spectrom; 2006; 20(2):125-30. PubMed ID: 16331744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of hydrogen cyanide (HCN) in breath using selected ion flow tube mass spectrometry--HCN is not a biomarker of Pseudomonas in chronic suppurative lung disease.
    Dummer J; Storer M; Sturney S; Scott-Thomas A; Chambers S; Swanney M; Epton M
    J Breath Res; 2013 Mar; 7(1):017105. PubMed ID: 23445778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis.
    Smith D; Spanel P
    Mass Spectrom Rev; 2005; 24(5):661-700. PubMed ID: 15495143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis.
    Enderby B; Smith D; Carroll W; Lenney W
    Pediatr Pulmonol; 2009 Feb; 44(2):142-7. PubMed ID: 19148935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct detection and quantification of malondialdehyde vapour in humid air using selected ion flow tube mass spectrometry supported by gas chromatography/mass spectrometry.
    Shestivska V; Antonowicz SS; Dryahina K; Kubišta J; Smith D; Španěl P
    Rapid Commun Mass Spectrom; 2015 Jun; 29(11):1069-79. PubMed ID: 26044275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line measurement of the absolute humidity of air, breath and liquid headspace samples by selected ion flow tube mass spectrometry.
    Spanĕl P; Smith D
    Rapid Commun Mass Spectrom; 2001; 15(8):563-9. PubMed ID: 11312505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation of suitable bag materials for the collection and storage of breath samples containing hydrogen cyanide.
    Gilchrist FJ; Razavi C; Webb AK; Jones AM; Spaněl P; Smith D; Lenney W
    J Breath Res; 2012 Sep; 6(3):036004. PubMed ID: 22759377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen cyanide concentrations in the breath of adult cystic fibrosis patients with and without Pseudomonas aeruginosa infection.
    Gilchrist FJ; Bright-Thomas RJ; Jones AM; Smith D; Spaněl P; Webb AK; Lenney W
    J Breath Res; 2013 Jun; 7(2):026010. PubMed ID: 23680696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry.
    Shestivska V; Nemec A; Dřevínek P; Sovová K; Dryahina K; Spaněl P
    Rapid Commun Mass Spectrom; 2011 Sep; 25(17):2459-67. PubMed ID: 21818806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.
    Spesyvyi A; Smith D; Španěl P
    Anal Chem; 2015 Dec; 87(24):12151-60. PubMed ID: 26583448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The combined use of thermal desorption and selected ion flow tube mass spectrometry for the quantification of xylene and toluene in air.
    Ross BM; Vermeulen N
    Rapid Commun Mass Spectrom; 2007; 21(22):3608-12. PubMed ID: 17939161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The novel selected-ion flow tube approach to trace gas analysis of air and breath.
    Smith D; Spanel P
    Rapid Commun Mass Spectrom; 1996; 10(10):1183-98. PubMed ID: 8759327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From molecules in space to molecules in breath.
    Smith D
    Paediatr Respir Rev; 2016 Jan; 17():50-2. PubMed ID: 26541224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined use of gas chromatography and selected ion flow tube mass spectrometry for absolute trace gas quantification.
    Kubista J; Spanel P; Dryahina K; Workman C; Smith D
    Rapid Commun Mass Spectrom; 2006; 20(4):563-7. PubMed ID: 16419024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in SIFT-MS: breath analysis and other applications.
    Spaněl P; Smith D
    Mass Spectrom Rev; 2011; 30(2):236-67. PubMed ID: 20648679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.