These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15330284)

  • 1. The effects of fentanyl and morphine on local blood flow and oxygen tension in the frontoparietal cortex and nucleus accumbens of the brain in white rats.
    Nikolaishvili LS; Gobechiya LSh; Mitagvariya NP
    Neurosci Behav Physiol; 2004 Jun; 34(5):467-71. PubMed ID: 15330284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of fentanyl and morphine on local blood flow and tissue oxygen tension in cortical frontal-parietal area and nucleus accumbens in albino rats].
    Nikolaĭshvili LS; Gobechiia LSh; Mitagvariia NP
    Ross Fiziol Zh Im I M Sechenova; 2002 Dec; 88(12):1505-11. PubMed ID: 12852208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral hemodynamic effects of morphine and fentanyl in patients with severe head injury: absence of correlation to cerebral autoregulation.
    de Nadal M; Munar F; Poca MA; Sahuquillo J; Garnacho A; Rosselló J
    Anesthesiology; 2000 Jan; 92(1):11-9. PubMed ID: 10638893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fentanyl increases dopamine release in rat nucleus accumbens: involvement of mesolimbic mu- and delta-2-opioid receptors.
    Yoshida Y; Koide S; Hirose N; Takada K; Tomiyama K; Koshikawa N; Cools AR
    Neuroscience; 1999; 92(4):1357-65. PubMed ID: 10426490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen fluctuations in the brain and periphery induced by intravenous fentanyl: effects of dose and drug experience.
    Choi S; Noya MR; Kiyatkin EA
    J Neurophysiol; 2024 Aug; 132(2):322-334. PubMed ID: 38863429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposing mechanisms underlying differential changes in brain oxygen and temperature induced by intravenous morphine.
    Solis E; Afzal A; Kiyatkin EA
    J Neurophysiol; 2018 Nov; 120(5):2513-2521. PubMed ID: 30183460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory depression and brain hypoxia induced by opioid drugs: Morphine, oxycodone, heroin, and fentanyl.
    Kiyatkin EA
    Neuropharmacology; 2019 Jun; 151():219-226. PubMed ID: 30735692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Circulation and oxygen tension in the brain of the alert rabbit during motion sickness].
    Skoromnyĭ NA; Demchenko IT; Beketov AI; Moskalenko IuE
    Fiziol Zh SSSR Im I M Sechenova; 1986 Mar; 72(3):352-6. PubMed ID: 3486785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of isoflurane, fentanyl, or thiopental anesthesia on regional cerebral blood flow and brain surface PO2 in the presence of a focal lesion in rabbits.
    Murr R; Schürer L; Berger S; Enzenbach R; Peter K; Baethmann A
    Anesth Analg; 1993 Nov; 77(5):898-907. PubMed ID: 8214725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analgesic doses of fentanyl impair oxidative metabolism of neonatal hepatocytes.
    Zamparelli M; Eaton S; Quant PA; McEwan A; Spitz L; Pierro A
    J Pediatr Surg; 1999 Feb; 34(2):260-3. PubMed ID: 10052800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged morphine treatment selectively increases membrane recruitment of delta-opioid receptors in mouse basal ganglia.
    Lucido AL; Morinville A; Gendron L; Stroh T; Beaudet A
    J Mol Neurosci; 2005; 25(3):207-14. PubMed ID: 15800374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central action of narcotic analgesics. V. Participation of serotonin in the mechanism of action of narcotic analgesics.
    Fidecka S; Langwiński R
    Pol J Pharmacol Pharm; 1979; 31(5):461-71. PubMed ID: 44745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of behavioral effects of morphine and fentanyl in dogs and cats.
    Kamata M; Nagahama S; Kakishima K; Sasaki N; Nishimura R
    J Vet Med Sci; 2012 Feb; 74(2):231-4. PubMed ID: 21952398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of acute and chronic morphine on DOPAC and glutamate at subcortical DA terminals in awake rats.
    Huang NK; Tseng CJ; Wong CS; Tung CS
    Pharmacol Biochem Behav; 1997 Mar; 56(3):363-71. PubMed ID: 9077570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opioid pharmacodynamics in neonatal dogs: differences between morphine and fentanyl.
    Bragg P; Zwass MS; Lau M; Fisher DM
    J Appl Physiol (1985); 1995 Nov; 79(5):1519-24. PubMed ID: 8594008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of endogenous cholecystokinin in tolerance to morphine antinociception in the nucleus accumbens of rats.
    Xiong W; Yu LC
    Behav Brain Res; 2006 Oct; 173(1):116-21. PubMed ID: 16837074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidural injections of bupivacaine, morphine, fentanyl, lofentanil, and DADL in chronically implanted rats: a pharmacologic and pathologic study.
    Durant PA; Yaksh TL
    Anesthesiology; 1986 Jan; 64(1):43-53. PubMed ID: 2867721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of the effects of morphine in the dorsal periaqueductal gray and nucleus accumbens of rats submitted to the elevated plus-maze test.
    Anseloni VC; Coimbra NC; Morato S; Brandão ML
    Exp Brain Res; 1999 Nov; 129(2):260-8. PubMed ID: 10591900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prefrontal cortex serotonin, stress, and morphine-induced nucleus accumbens dopamine.
    Bland ST; Schmid MJ; Watkins LR; Maier SF
    Neuroreport; 2004 Dec; 15(17):2637-41. PubMed ID: 15570168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic antinociceptive actions and tolerance development produced by morphine-fentanyl coadministration: correlation with μ-opioid receptor internalization.
    Silva-Moreno A; Gonzalez-Espinosa C; León-Olea M; Cruz SL
    Eur J Pharmacol; 2012 Jan; 674(2-3):239-47. PubMed ID: 22079772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.