These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15330284)

  • 21. Central action of narcotic analgesics. Part IV. Noradrenergic influences on the activity of analgesics in rats.
    Malec D; Grabowska E; Langwiński R
    Pol J Pharmacol Pharm; 1978; 30(5):627-37. PubMed ID: 35781
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of repeated administration of morphine, cocaine and ethanol on mu and delta opioid receptor density in the nucleus accumbens and striatum of the rat.
    Turchan J; Przewłocka B; Toth G; Lasoń W; Borsodi A; Przewłocki R
    Neuroscience; 1999; 91(3):971-7. PubMed ID: 10391475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tonic opioid inhibition of the subiculo-accumbens pathway.
    Hakan RL
    Synapse; 2001 Jul; 41(1):71-85. PubMed ID: 11354016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tolerance and cross-tolerance to morphine-like stimulus effects of mu opioids in rats.
    Walker EA; Richardson TM; Young AM
    Psychopharmacology (Berl); 1997 Sep; 133(1):17-28. PubMed ID: 9335076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nociceptin differentially affects morphine-induced dopamine release from the nucleus accumbens and nucleus caudate in rats.
    Di Giannuario A; Pieretti S
    Peptides; 2000 Jul; 21(7):1125-30. PubMed ID: 10998547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Urodynamic changes following intrathecal administration of morphine and fentanyl to dogs.
    el-Bindary EM; Abu el-Nasr LM
    East Mediterr Health J; 2001; 7(1-2):189-96. PubMed ID: 12596969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GABAA receptors in VTA mediate the morphine-induced release of ascorbic acid in rat nucleus accumbens.
    Sun JY; Yang JY; Wang F; Hou Y; Dong YX; Wu CF
    Brain Res; 2011 Jan; 1368():52-8. PubMed ID: 20965157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of age on cholinergic vasodilation of cortical cerebral blood vessels in rats.
    Uchida S; Suzuki A; Kagitani F; Hotta H
    Neurosci Lett; 2000 Nov; 294(2):109-12. PubMed ID: 11058799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of morphine but not fentanyl with cerebral alpha2-adrenoceptors in alpha2-adrenoceptor knockout mice.
    Höcker J; Böhm R; Meybohm P; Gruenewald M; Renner J; Ohnesorge H; Scholz J; Bein B
    J Pharm Pharmacol; 2009 Jul; 61(7):901-10. PubMed ID: 19589232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Central action of narcotic analgesics. II. Locomotor activity and narcotic analgesics.
    Fidecka S; Malec D; Langwiński R
    Pol J Pharmacol Pharm; 1978; 30(1):5-16. PubMed ID: 25426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increase in adenosine sensitivity in the nucleus accumbens following chronic morphine treatment.
    Brundege JM; Williams JT
    J Neurophysiol; 2002 Mar; 87(3):1369-75. PubMed ID: 11877511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early response in central hemodynamics to high doses of sufentanil or morphine in dogs.
    Eriksen J; Berthelsen P; Ahn NC; Rasmussen JP
    Acta Anaesthesiol Scand; 1981 Feb; 25(1):33-8. PubMed ID: 6117171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sex differences and role of gonadal hormones on glutamate level in the nucleus accumbens in morphine tolerant rats: a microdialysis study.
    Mousavi Z; Shafaghi B; Kobarfard F; Jorjani M
    Eur J Pharmacol; 2007 Jan; 554(2-3):145-9. PubMed ID: 17112508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Switching from morphine to fentanyl attenuates the decline of µ-opioid receptor expression in periaqueductal gray of rats with morphine tolerance.
    Dong YP; Sun L; Liu XY; Liu RS
    Chin Med J (Engl); 2013; 126(19):3712-6. PubMed ID: 24112169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of nucleus accumbens μ opioid receptors in the effects of morphine on ERK1/2 phosphorylation.
    Rosas M; Porru S; Fenu S; Ruiu S; Peana AT; Papale A; Brambilla R; Di Chiara G; Acquas E
    Psychopharmacology (Berl); 2016 Aug; 233(15-16):2943-54. PubMed ID: 27245230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvements of mu- and kappa-opioid receptors in morphine-induced antinociception in the nucleus accumbens of rats.
    Xiong W; Yu LC
    Neurosci Lett; 2006 May; 399(1-2):167-70. PubMed ID: 16490317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of fentanyl on local cerebral blood flow in the rat.
    Safo Y; Young ML; Smith DS; Greenberg J; Carlsson C; Reivich M; Keykhah M; Harp JR
    Acta Anaesthesiol Scand; 1985 Aug; 29(6):594-8. PubMed ID: 4061001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphine-induced inhibition of Ca
    Wu J; Zhao R; Guo L; Zhen X
    Addict Biol; 2017 Sep; 22(5):1289-1303. PubMed ID: 27239019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Duration of action of analgesic supplements to anesthesia. A double-blind comparison between morphine, fentanyl and sulfentanil.
    Kay B; Rolly G
    Acta Anaesthesiol Belg; 1977 Mar; 28(1):25-32. PubMed ID: 21506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Relationship between the pain-relieving action of narcotic analgesics and their effect on respiration].
    Bender KI; Gerasimova OV
    Farmakol Toksikol; 1976; 39(5):552-6. PubMed ID: 18367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.