BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 15330853)

  • 1. FtsZ-dependent localization of GroEL protein at possible division sites.
    Ogino H; Wachi M; Ishii A; Iwai N; Nishida T; Yamada S; Nagai K; Sugai M
    Genes Cells; 2004 Sep; 9(9):765-71. PubMed ID: 15330853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Role of GroEL in Escherichia coli cell division].
    Wachi M
    Tanpakushitsu Kakusan Koso; 2004 May; 49(7 Suppl):853. PubMed ID: 15168475
    [No Abstract]   [Full Text] [Related]  

  • 3. SulA-independent filamentation of Escherichia coli during growth after release from high hydrostatic pressure treatment.
    Kawarai T; Wachi M; Ogino H; Furukawa S; Suzuki K; Ogihara H; Yamasaki M
    Appl Microbiol Biotechnol; 2004 Apr; 64(2):255-62. PubMed ID: 14566433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.
    Gupta P; Aggarwal N; Batra P; Mishra S; Chaudhuri TK
    Int J Biochem Cell Biol; 2006; 38(11):1975-85. PubMed ID: 16822698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of two essential domains of Escherichia coli FtsA in localization and progression of the division ring.
    Rico AI; García-Ovalle M; Mingorance J; Vicente M
    Mol Microbiol; 2004 Sep; 53(5):1359-71. PubMed ID: 15387815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of GroEL determined by in vivo incorporation of a fluorescent amino acid.
    Charbon G; Wang J; Brustad E; Schultz PG; Horwich AL; Jacobs-Wagner C; Chapman E
    Bioorg Med Chem Lett; 2011 Oct; 21(20):6067-70. PubMed ID: 21890355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hypothesis to explain division site selection in Escherichia coli by combining nucleoid occlusion and Min.
    Norris V; Woldringh C; Mileykovskaya E
    FEBS Lett; 2004 Mar; 561(1-3):3-10. PubMed ID: 15013745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants required to target penicillin-binding protein 3 to the septum of Escherichia coli.
    Piette A; Fraipont C; Den Blaauwen T; Aarsman ME; Pastoret S; Nguyen-Distèche M
    J Bacteriol; 2004 Sep; 186(18):6110-7. PubMed ID: 15342580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low temperature of GroEL/ES overproduction permits growth of Escherichia coli cells lacking trigger factor DnaK.
    Vorderwülbecke S; Kramer G; Merz F; Kurz TA; Rauch T; Zachmann-Brand B; Bukau B; Deuerling E
    FEBS Lett; 2005 Jun; 579(15):181-7. PubMed ID: 16021693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of mutations in GroES that allow GroEL to function as a single ring.
    Liu H; Kovács E; Lund PA
    FEBS Lett; 2009 Jul; 583(14):2365-71. PubMed ID: 19545569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli.
    Kerner MJ; Naylor DJ; Ishihama Y; Maier T; Chang HC; Stines AP; Georgopoulos C; Frishman D; Hayer-Hartl M; Mann M; Hartl FU
    Cell; 2005 Jul; 122(2):209-20. PubMed ID: 16051146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometric identification of proteins on membrane detected by Western blotting and lectin blotting.
    Ohtsu I; Nakanisi T; Furuta M; Ando E; Nishimura O
    J Proteome Res; 2005; 4(4):1391-6. PubMed ID: 16083291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The N terminus of the head protein of T4 bacteriophage directs proteins to the GroEL chaperonin.
    Snyder L; Tarkowski HJ
    J Mol Biol; 2005 Jan; 345(2):375-86. PubMed ID: 15571729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis.
    Karimova G; Dautin N; Ladant D
    J Bacteriol; 2005 Apr; 187(7):2233-43. PubMed ID: 15774864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a region of FtsA required for interaction with FtsZ.
    Pichoff S; Lutkenhaus J
    Mol Microbiol; 2007 May; 64(4):1129-38. PubMed ID: 17501933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of refolding activities between nanogel artificial chaperone and GroEL systems.
    Asayama W; Sawada S; Taguchi H; Akiyoshi K
    Int J Biol Macromol; 2008 Apr; 42(3):241-6. PubMed ID: 18179818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle.
    Tehver R; Chen J; Thirumalai D
    J Mol Biol; 2009 Mar; 387(2):390-406. PubMed ID: 19121324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Role of GroEL/GroES chaperonin system and Lon protease in regulation of expression Vibrio fischeri lux genes in Escherichia coli cells].
    Manukhov IV; Kotova VIu; Zavil'genskiĭ GB
    Mol Biol (Mosk); 2006; 40(2):277-83. PubMed ID: 16637268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling.
    Beuria TK; Santra MK; Panda D
    Biochemistry; 2005 Dec; 44(50):16584-93. PubMed ID: 16342949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GroEL assisted folding of large polypeptide substrates in Escherichia coli: Present scenario and assignments for the future.
    Chaudhuri TK; Verma VK; Maheshwari A
    Prog Biophys Mol Biol; 2009 Jan; 99(1):42-50. PubMed ID: 19027782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.