These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 15331054)
1. Modelling of third cytoplasmic loop of bovine rhodopsin by multicanonical molecular dynamics. Watanabe YS; Fukunishi Y; Nakamura H J Mol Graph Model; 2004 Sep; 23(1):59-68. PubMed ID: 15331054 [TBL] [Abstract][Full Text] [Related]
2. Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain of bovine rhodopsin. Yeagle PL; Alderfer JL; Albert AD Mol Vis; 1996 Dec; 2():12. PubMed ID: 9238089 [TBL] [Abstract][Full Text] [Related]
3. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8. Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527 [TBL] [Abstract][Full Text] [Related]
4. Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Altenbach C; Yang K; Farrens DL; Farahbakhsh ZT; Khorana HG; Hubbell WL Biochemistry; 1996 Sep; 35(38):12470-8. PubMed ID: 8823182 [TBL] [Abstract][Full Text] [Related]
5. Structural features and light-dependent changes in the sequence 59-75 connecting helices I and II in rhodopsin: a site-directed spin-labeling study. Altenbach C; Klein-Seetharaman J; Hwa J; Khorana HG; Hubbell WL Biochemistry; 1999 Jun; 38(25):7945-9. PubMed ID: 10387037 [TBL] [Abstract][Full Text] [Related]
6. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin. Mehler EL; Hassan SA; Kortagere S; Weinstein H Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264 [TBL] [Abstract][Full Text] [Related]
7. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops. Kim JM; Hwa J; Garriga P; Reeves PJ; RajBhandary UL; Khorana HG Biochemistry; 2005 Feb; 44(7):2284-92. PubMed ID: 15709741 [TBL] [Abstract][Full Text] [Related]
8. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. Bhattacharya S; Hall SE; Vaidehi N J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional model for meta-II rhodopsin, an activated G-protein-coupled receptor. Nikiforovich GV; Marshall GR Biochemistry; 2003 Aug; 42(30):9110-20. PubMed ID: 12885244 [TBL] [Abstract][Full Text] [Related]
10. Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site. Wolf S; Böckmann M; Höweler U; Schlitter J; Gerwert K FEBS Lett; 2008 Oct; 582(23-24):3335-42. PubMed ID: 18775703 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional models of histamine H3 receptor antagonist complexes and their pharmacophore. Axe FU; Bembenek SD; Szalma S J Mol Graph Model; 2006 May; 24(6):456-64. PubMed ID: 16386444 [TBL] [Abstract][Full Text] [Related]
12. Structural changes in lumirhodopsin and metarhodopsin I studied by their photoreactions at 77 K. Furutani Y; Kandori H; Shichida Y Biochemistry; 2003 Jul; 42(28):8494-500. PubMed ID: 12859195 [TBL] [Abstract][Full Text] [Related]
13. Structure of the third cytoplasmic loop of bovine rhodopsin. Yeagle PL; Alderfer JL; Albert AD Biochemistry; 1995 Nov; 34(45):14621-5. PubMed ID: 7578070 [TBL] [Abstract][Full Text] [Related]
14. Structure of rhodopsin and the metarhodopsin I photointermediate. Schertler GF Curr Opin Struct Biol; 2005 Aug; 15(4):408-15. PubMed ID: 16043340 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the predicted secondary structure of bacteriorhodopsin. Prediction of the bovine rhodopsin secondary structure and its sequence similarity with bacteriorhodopsin. Nero TL; Louis WJ Biochem Int; 1992 Aug; 27(5):763-70. PubMed ID: 1417909 [TBL] [Abstract][Full Text] [Related]
16. Simulation study on the disordered state of an Alzheimer's beta amyloid peptide Abeta(12 36) in water consisting of random-structural, beta-structural, and helical clusters. Ikebe J; Kamiya N; Ito J; Shindo H; Higo J Protein Sci; 2007 Aug; 16(8):1596-608. PubMed ID: 17656579 [TBL] [Abstract][Full Text] [Related]
17. Homology modeling and molecular dynamics simulations of the mu opioid receptor in a membrane-aqueous system. Zhang Y; Sham YY; Rajamani R; Gao J; Portoghese PS Chembiochem; 2005 May; 6(5):853-9. PubMed ID: 15776407 [TBL] [Abstract][Full Text] [Related]
18. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin. Brabazon DM; Abdulaev NG; Marino JP; Ridge KD Biochemistry; 2003 Jan; 42(2):302-11. PubMed ID: 12525157 [TBL] [Abstract][Full Text] [Related]
19. First cytoplasmic loop of glucagon-like peptide-1 receptor can function at the third cytoplasmic loop position of rhodopsin. Yamashita T; Tose K; Shichida Y Photochem Photobiol; 2008; 84(4):931-6. PubMed ID: 18363619 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of squid rhodopsin. Murakami M; Kouyama T Nature; 2008 May; 453(7193):363-7. PubMed ID: 18480818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]