These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 15331056)
41. Crystal structure of Thermus thermophilus tRNA m1A58 methyltransferase and biophysical characterization of its interaction with tRNA. Barraud P; Golinelli-Pimpaneau B; Atmanene C; Sanglier S; Van Dorsselaer A; Droogmans L; Dardel F; Tisné C J Mol Biol; 2008 Mar; 377(2):535-50. PubMed ID: 18262540 [TBL] [Abstract][Full Text] [Related]
42. Identification and characterization of a unique cysteine residue proximal to the catalytic site of Arabidopsis thaliana carotenoid cleavage enzyme 1. Guo S; Boyd J; Sammynaiken R; Loewen MC Biochem Cell Biol; 2008 Jun; 86(3):262-70. PubMed ID: 18523487 [TBL] [Abstract][Full Text] [Related]
43. Insights into lignin primary structure and deconstruction from Arabidopsis thaliana COMT (caffeic acid O-methyl transferase) mutant Atomt1. Moinuddin SG; Jourdes M; Laskar DD; Ki C; Cardenas CL; Kim KW; Zhang D; Davin LB; Lewis NG Org Biomol Chem; 2010 Sep; 8(17):3928-46. PubMed ID: 20652169 [TBL] [Abstract][Full Text] [Related]
44. Three Arabidopsis DUF579 domain-containing GXM proteins are methyltransferases catalyzing 4-o-methylation of glucuronic acid on xylan. Lee C; Teng Q; Zhong R; Yuan Y; Haghighat M; Ye ZH Plant Cell Physiol; 2012 Nov; 53(11):1934-49. PubMed ID: 23045523 [TBL] [Abstract][Full Text] [Related]
45. Substrate preferences of caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferases in developing stems of alfalfa (Medicago sativa L.). Inoue K; Parvathi K; Dixon RA Arch Biochem Biophys; 2000 Mar; 375(1):175-82. PubMed ID: 10683265 [TBL] [Abstract][Full Text] [Related]
46. Affinity chromatography, substrate/product specificity, and amino acid sequence analysis of an isoflavone O-methyltransferase from alfalfa (Medicago sativa L.). He XZ; Dixon RA Arch Biochem Biophys; 1996 Dec; 336(1):121-9. PubMed ID: 8951042 [TBL] [Abstract][Full Text] [Related]
47. Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase. Li HM; Rotter D; Hartman TG; Pak FE; Havkin-Frenkel D; Belanger FC Plant Mol Biol; 2006 Jun; 61(3):537-52. PubMed ID: 16830185 [TBL] [Abstract][Full Text] [Related]
48. Regiospecificity and kinetic properties of a plant natural product O-methyltransferase are determined by its N-terminal domain. Vogt T FEBS Lett; 2004 Mar; 561(1-3):159-62. PubMed ID: 15013769 [TBL] [Abstract][Full Text] [Related]
49. Flavonoid methylation: a novel 4'-O-methyltransferase from Catharanthus roseus, and evidence that partially methylated flavanones are substrates of four different flavonoid dioxygenases. Schröder G; Wehinger E; Lukacin R; Wellmann F; Seefelder W; Schwab W; Schröder J Phytochemistry; 2004 Apr; 65(8):1085-94. PubMed ID: 15110688 [TBL] [Abstract][Full Text] [Related]
50. Structure-function analyses and molecular modeling of caffeic acid-O-methyltransferase and caffeoyl-CoA-O-methyltransferase: revisiting the basis of alternate methylation pathways during monolignol biosynthesis. Naaz H; Pandey VP; Singh S; Dwivedi UN Biotechnol Appl Biochem; 2013; 60(2):170-89. PubMed ID: 23600572 [TBL] [Abstract][Full Text] [Related]
51. Crystal structures of the substrate-bound forms of red chlorophyll catabolite reductase: implications for site-specific and stereospecific reaction. Sugishima M; Okamoto Y; Noguchi M; Kohchi T; Tamiaki H; Fukuyama K J Mol Biol; 2010 Oct; 402(5):879-91. PubMed ID: 20727901 [TBL] [Abstract][Full Text] [Related]
52. Structural basis for prereceptor modulation of plant hormones by GH3 proteins. Westfall CS; Zubieta C; Herrmann J; Kapp U; Nanao MH; Jez JM Science; 2012 Jun; 336(6089):1708-11. PubMed ID: 22628555 [TBL] [Abstract][Full Text] [Related]
53. Crystal structure of the plant epigenetic protein arginine methyltransferase 10. Cheng Y; Frazier M; Lu F; Cao X; Redinbo MR J Mol Biol; 2011 Nov; 414(1):106-22. PubMed ID: 21986201 [TBL] [Abstract][Full Text] [Related]
54. Structural insights into the mechanism defining substrate affinity in Arabidopsis thaliana dUTPase: the role of tryptophan 93 in ligand orientation. Inoguchi N; Chaiseeda K; Yamanishi M; Kim MK; Jang Y; Bajaj M; Chia CP; Becker DF; Moriyama H BMC Res Notes; 2015 Dec; 8():784. PubMed ID: 26666293 [TBL] [Abstract][Full Text] [Related]
55. A novel Mg(2+)-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. Ibdah M; Zhang XH; Schmidt J; Vogt T J Biol Chem; 2003 Nov; 278(45):43961-72. PubMed ID: 12941960 [TBL] [Abstract][Full Text] [Related]
56. PRMT11: a new Arabidopsis MBD7 protein partner with arginine methyltransferase activity. Scebba F; De Bastiani M; Bernacchia G; Andreucci A; Galli A; Pitto L Plant J; 2007 Oct; 52(2):210-22. PubMed ID: 17711414 [TBL] [Abstract][Full Text] [Related]
57. Structure-function relationships of wheat flavone O-methyltransferase: Homology modeling and site-directed mutagenesis. Zhou JM; Lee E; Kanapathy-Sinnaiaha F; Park Y; Kornblatt JA; Lim Y; Ibrahim RK BMC Plant Biol; 2010 Jul; 10():156. PubMed ID: 20670441 [TBL] [Abstract][Full Text] [Related]
58. Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis. Byeon Y; Lee HY; Lee K; Back K J Pineal Res; 2014 Sep; 57(2):219-27. PubMed ID: 25039887 [TBL] [Abstract][Full Text] [Related]
59. O-Methylation of benzaldehyde derivatives by "lignin specific" caffeic acid 3-O-methyltransferase. Kota P; Guo D; Zubieta C; Noel J; Dixon RA Phytochemistry; 2004 Apr; 65(7):837-46. PubMed ID: 15081283 [TBL] [Abstract][Full Text] [Related]
60. Sequence, structural, and evolutionary analysis of prokaryotic ribosomal protein L11 methyltransferases. Bujnicki JM Acta Microbiol Pol; 2000; 49(1):19-29. PubMed ID: 10997488 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]