BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 15331146)

  • 1. Effect of simple spike firing mode on complex spike firing rate and waveform in cerebellar Purkinje cells in non-anesthetized mice.
    Servais L; Bearzatto B; Hourez R; Dan B; Schiffmann SN; Cheron G
    Neurosci Lett; 2004 Sep; 367(2):171-6. PubMed ID: 15331146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mono- and dual-frequency fast cerebellar oscillation in mice lacking parvalbumin and/or calbindin D-28k.
    Servais L; Bearzatto B; Schwaller B; Dumont M; De Saedeleer C; Dan B; Barski JJ; Schiffmann SN; Cheron G
    Eur J Neurosci; 2005 Aug; 22(4):861-70. PubMed ID: 16115209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased occurrence of climbing fiber inputs to the cerebellar flocculus in a mutant mouse is correlated with the timing delay of optokinetic response.
    Yoshida T; Funabiki K; Hirano T
    Eur J Neurosci; 2007 Mar; 25(5):1467-74. PubMed ID: 17425572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The leaner P/Q-type calcium channel mutation renders cerebellar Purkinje neurons hyper-excitable and eliminates Ca2+-Na+ spike bursts.
    Ovsepian SV; Friel DD
    Eur J Neurosci; 2008 Jan; 27(1):93-103. PubMed ID: 18093175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory stimulus evokes inhibition rather than excitation in cerebellar Purkinje cells in vivo in mice.
    Chu CP; Bing YH; Qiu DL
    Neurosci Lett; 2011 Jan; 487(2):182-6. PubMed ID: 20965231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic description of complex and simple spike firing in cerebellar Purkinje cells.
    Shin SL; Rotter S; Aertsen A; De Schutter E
    Eur J Neurosci; 2007 Feb; 25(3):785-94. PubMed ID: 17328774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Firing dynamics of cerebellar purkinje cells.
    Fernandez FR; Engbers JD; Turner RW
    J Neurophysiol; 2007 Jul; 98(1):278-94. PubMed ID: 17493923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback control of Purkinje cell activity by the cerebello-olivary pathway.
    Bengtsson F; Svensson P; Hesslow G
    Eur J Neurosci; 2004 Dec; 20(11):2999-3005. PubMed ID: 15579154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlations between purkinje cell single-unit activity and simultaneously recorded field potentials in the immediately underlying granule cell layer.
    Lu H; Hartmann MJ; Bower JM
    J Neurophysiol; 2005 Sep; 94(3):1849-60. PubMed ID: 15928051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of harmaline of the complex spike waveform and depression time in cerebellar Purkinje cell discharge in rat postnatal ontogenesis].
    Karelina TV; Grigor'ian RA
    Zh Evol Biokhim Fiziol; 2010; 46(3):218-24. PubMed ID: 20583582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of chronic ethanol ingestion on Purkinje and Golgi cell firing in vivo and on motor coordination in mice.
    Servais L; Bearzatto B; Delvaux V; Noël E; Leach R; Brasseur M; Schiffmann SN; Guy C
    Brain Res; 2005 Sep; 1055(1-2):171-9. PubMed ID: 16107247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice.
    Goossens J; Daniel H; Rancillac A; van der Steen J; Oberdick J; Crépel F; De Zeeuw CI; Frens MA
    J Neurosci; 2001 Aug; 21(15):5813-23. PubMed ID: 11466453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo analysis of Purkinje cell firing properties during postnatal mouse development.
    Arancillo M; White JJ; Lin T; Stay TL; Sillitoe RV
    J Neurophysiol; 2015 Jan; 113(2):578-91. PubMed ID: 25355961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased noise level of purkinje cell activities minimizes impact of their modulation during sensorimotor control.
    Hoebeek FE; Stahl JS; van Alphen AM; Schonewille M; Luo C; Rutteman M; van den Maagdenberg AM; Molenaar PC; Goossens HH; Frens MA; De Zeeuw CI
    Neuron; 2005 Mar; 45(6):953-65. PubMed ID: 15797555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increase in Purkinje cell gain associated with naturally activated climbing fiber input.
    Ebner TJ; Yu QX; Bloedel JR
    J Neurophysiol; 1983 Jul; 50(1):205-19. PubMed ID: 6308180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State-dependence of climbing fiber-driven calcium transients in Purkinje cells.
    Rokni D; Yarom Y
    Neuroscience; 2009 Sep; 162(3):694-701. PubMed ID: 19185601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Characteristics of activity of "fast" and "slow" Purkinje cells of the cerebellum].
    Podladchikova LN; Bondar' GG; Dunin-Barkovskiĭ VL
    Biofizika; 2002; 47(2):338-44. PubMed ID: 11969174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative aspects of raphé-induced modulation of evoked and spontaneous cerebellar unit activity.
    Strahlendorf JC; Strahlendorf HK; Barnes CD
    Prog Clin Biol Res; 1981; 68():217-25. PubMed ID: 7301883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The postnatal development of refractory periods and threshold potentials at cerebellar Purkinje neurons.
    Guan S; Ma S; Zhu Y; Wang J
    Brain Res; 2006 Jun; 1097(1):59-64. PubMed ID: 16730670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antiphasic Purkinje cell responses in mouse uvula-nodulus are sensitive to static roll-tilt and topographically organized.
    Yakhnitsa V; Barmack NH
    Neuroscience; 2006 Dec; 143(2):615-26. PubMed ID: 16973298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.