BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 15331590)

  • 1. Resistance of the human beta1-adrenergic receptor to agonist-induced ubiquitination: a mechanism for impaired receptor degradation.
    Liang W; Fishman PH
    J Biol Chem; 2004 Nov; 279(45):46882-9. PubMed ID: 15331590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta2-adrenergic receptor lysosomal trafficking is regulated by ubiquitination of lysyl residues in two distinct receptor domains.
    Xiao K; Shenoy SK
    J Biol Chem; 2011 Apr; 286(14):12785-95. PubMed ID: 21330366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low affinity of beta1-adrenergic receptor for beta-arrestins explains the resistance to agonist-induced internalization.
    Shiina T; Nagao T; Kurose H
    Life Sci; 2001 Apr; 68(19-20):2251-7. PubMed ID: 11358334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance of the human beta 1-adrenergic receptor to agonist-mediated down-regulation. Role of the C terminus in determining beta-subtype degradation.
    Liang W; Austin S; Hoang Q; Fishman PH
    J Biol Chem; 2003 Oct; 278(41):39773-81. PubMed ID: 12888573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trans-Golgi Network (TGN) as a regulatory node for β1-adrenergic receptor (β1AR) down-modulation and recycling.
    Cheng SB; Filardo EJ
    J Biol Chem; 2012 Apr; 287(17):14178-91. PubMed ID: 22378779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin.
    Shenoy SK; McDonald PH; Kohout TA; Lefkowitz RJ
    Science; 2001 Nov; 294(5545):1307-13. PubMed ID: 11588219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A primate-dominant third glycosylation site of the beta2-adrenergic receptor routes receptors to degradation during agonist regulation.
    Mialet-Perez J; Green SA; Miller WE; Liggett SB
    J Biol Chem; 2004 Sep; 279(37):38603-7. PubMed ID: 15247302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of clathrin-mediated endocytosis in agonist-induced down-regulation of the beta2-adrenergic receptor.
    Gagnon AW; Kallal L; Benovic JL
    J Biol Chem; 1998 Mar; 273(12):6976-81. PubMed ID: 9507004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similarities and differences in the coupling of human beta1- and beta2-adrenoceptors to Gs(alpha) splice variants.
    Wenzel-Seifert K; Liu HY; Seifert R
    Biochem Pharmacol; 2002 Jul; 64(1):9-20. PubMed ID: 12106601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The deubiquitinase ubiquitin-specific protease 20 is a positive modulator of myocardial β
    Yu SM; Jean-Charles PY; Abraham DM; Kaur S; Gareri C; Mao L; Rockman HA; Shenoy SK
    J Biol Chem; 2019 Feb; 294(7):2500-2518. PubMed ID: 30538132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trafficking, ubiquitination, and down-regulation of the human platelet-activating factor receptor.
    Dupré DJ; Chen Z; Le Gouill C; Thériault C; Parent JL; Rola-Pleszczynski M; Stankova J
    J Biol Chem; 2003 Nov; 278(48):48228-35. PubMed ID: 14500726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-adrenergic receptor subtypes that mediate ractopamine stimulation of lipolysis.
    Mills SE; Spurlock ME; Smith DJ
    J Anim Sci; 2003 Mar; 81(3):662-8. PubMed ID: 12661646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustained activation of a G protein-coupled receptor via "anchored" agonist binding. Molecular localization of the salmeterol exosite within the 2-adrenergic receptor.
    Green SA; Spasoff AP; Coleman RA; Johnson M; Liggett SB
    J Biol Chem; 1996 Sep; 271(39):24029-35. PubMed ID: 8798639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptor/beta-arrestin complex formation and the differential trafficking and resensitization of beta2-adrenergic and angiotensin II type 1A receptors.
    Anborgh PH; Seachrist JL; Dale LB; Ferguson SS
    Mol Endocrinol; 2000 Dec; 14(12):2040-53. PubMed ID: 11117533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of mammalian vacuolar protein-sorting proteins in endocytic trafficking of a non-ubiquitinated G protein-coupled receptor to lysosomes.
    Hislop JN; Marley A; Von Zastrow M
    J Biol Chem; 2004 May; 279(21):22522-31. PubMed ID: 15024011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upregulation of alveolar epithelial active Na+ transport is dependent on beta2-adrenergic receptor signaling.
    Mutlu GM; Dumasius V; Burhop J; McShane PJ; Meng FJ; Welch L; Dumasius A; Mohebahmadi N; Thakuria G; Hardiman K; Matalon S; Hollenberg S; Factor P
    Circ Res; 2004 Apr; 94(8):1091-100. PubMed ID: 15016730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domains of beta1 and beta2 adrenergic receptors to bind subtype selective agonists.
    Kurose H; Isogaya M; Kikkawa H; Nagao T
    Life Sci; 1998; 62(17-18):1513-7. PubMed ID: 9585128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β
    Yang HQ; Wang LP; Gong YY; Fan XX; Zhu SY; Wang XT; Wang YP; Li LL; Xing X; Liu XX; Ji GS; Hou T; Zhang Y; Xiao RP; Wang SQ
    Circ Res; 2019 Apr; 124(9):1350-1359. PubMed ID: 30836825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. beta-Arrestin mediates beta1-adrenergic receptor-epidermal growth factor receptor interaction and downstream signaling.
    Tilley DG; Kim IM; Patel PA; Violin JD; Rockman HA
    J Biol Chem; 2009 Jul; 284(30):20375-86. PubMed ID: 19509284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-classical regulation of β1- and β 2-adrenoceptor-mediated inotropic responses in rat heart ventricle by the G protein Gi.
    Melsom CB; Hussain RI; Ørstavik Ø; Aronsen JM; Sjaastad I; Skomedal T; Osnes JB; Levy FO; Krobert KA
    Naunyn Schmiedebergs Arch Pharmacol; 2014 Dec; 387(12):1177-86. PubMed ID: 25216690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.