These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 15332442)
1. Effects of temperature, photoperiod, and light intensity on the eclosion rhythm of the high-altitude Himalayan strain of Drosophila ananassae. Khare PV; Keny VL; Vanlalnghaka C; Satralkar MK; Kasture MS; Barnabas RJ; Joshi DS Chronobiol Int; 2004 May; 21(3):353-65. PubMed ID: 15332442 [TBL] [Abstract][Full Text] [Related]
2. Temperature dependent eclosion rhythmicity in the high altitude Himalayan strains of Drosophila ananassae. Khare PV; Barnabas RJ; Kanojiya M; Kulkarni AD; Joshi DS Chronobiol Int; 2002 Nov; 19(6):1041-52. PubMed ID: 12511025 [TBL] [Abstract][Full Text] [Related]
3. Effects of photophase and altitude on oviposition rhythm of the himalayan strains of Drosophila ananassae. Satralkar MK; Khare PV; Keny VL; Chhakchhuak V; Kasture MS; Shivagaje AJ; Iyyer SB; Barnabas RJ; Joshi DS Chronobiol Int; 2007; 24(3):389-405. PubMed ID: 17612939 [TBL] [Abstract][Full Text] [Related]
4. Effect of light intensity on the oviposition rhythm of the altitudinal strains of Drosophila ananassae. Satralkar MK; Khare PV; Keny VL; Chhakchhuak V; Kasture MS; Shivagaje AJ; Iyyer SB; Joshi DS Chronobiol Int; 2007; 24(1):21-30. PubMed ID: 17364577 [TBL] [Abstract][Full Text] [Related]
5. Light at night alters the parameters of the eclosion rhythm in a tropical fruit fly, Drosophila jambulina. Thakurdas P; Sharma S; Vanlalhriatpuia K; Sinam B; Chib M; Shivagaje A; Joshi D Chronobiol Int; 2009 Dec; 26(8):1575-86. PubMed ID: 20030541 [TBL] [Abstract][Full Text] [Related]
6. Two oscillators might control the locomotor activity rhythm of the high-altitude Himalayan strain of Drosophila helvetica. Keny V; Vanlalnghaka C; Hakim SS; Barnabas RJ; Joshi DS Chronobiol Int; 2007; 24(5):821-34. PubMed ID: 17994339 [TBL] [Abstract][Full Text] [Related]
7. Latitudinal variation in eclosion rhythm among strains of Drosophila ananassae. Joshi DS; Gore AP Indian J Exp Biol; 1999 Jul; 37(7):718-24. PubMed ID: 10522160 [TBL] [Abstract][Full Text] [Related]
8. Mutations for activity level in Drosophila jambulina perturbed its pacemaker that controls circadian eclosion rhythm. Joshi S; Hodgar R; Kanojia M; Chatale B; Parihar V; Joshi DS Naturwissenschaften; 2002 Feb; 89(2):67-70. PubMed ID: 12046623 [TBL] [Abstract][Full Text] [Related]
9. Altitudinal variation in the circadian rhythm of oviposition in Drosophila ananassae. Khare PV; Satralkar MK; Vanlalnghaka C; Keny VL; Kasture MS; Shivagaje AJ; Barnabas RJ; Joshi DS Chronobiol Int; 2005; 22(1):45-57. PubMed ID: 15865320 [TBL] [Abstract][Full Text] [Related]
10. Paradoxical masking effects of bright photophase and high temperature in Drosophila malerkotliana. Sharma S; Thakurdas P; Sinam B; Joshi D Chronobiol Int; 2012 Mar; 29(2):157-65. PubMed ID: 22324554 [TBL] [Abstract][Full Text] [Related]
11. Effects of altitude on circadian rhythm of adult locomotor activity in Himalayan strains of Drosophila helvetica. Vanlalhriatpuia K; Chhakchhuak V; Moses SK; Iyyer SB; Kasture MS; Shivagaje AJ; Rajneesh BJ; Joshi DS J Circadian Rhythms; 2007 Jan; 5():1. PubMed ID: 17210086 [TBL] [Abstract][Full Text] [Related]
12. Altitudinal variation in phase response curves for the Himalayan strains of Drosophila helvetica. Keny V; Vanlalnghaka C; Hakim SS; Barnabas RJ; Joshi DS Chronobiol Int; 2007; 24(5):835-44. PubMed ID: 17994340 [TBL] [Abstract][Full Text] [Related]
13. Entrainment of eclosion rhythm in Drosophila melanogaster populations reared for more than 700 generations in constant light environment. Paranjpe DA; Anitha D; Kumar S; Kumar D; Verkhedkar K; Chandrashekaran MK; Joshi A; Sharma VK Chronobiol Int; 2003 Nov; 20(6):977-87. PubMed ID: 14680138 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua: the change of rhythmicity. Watari Y J Insect Physiol; 2005 Jan; 51(1):11-6. PubMed ID: 15686641 [TBL] [Abstract][Full Text] [Related]
15. Multi-oscillatory control of eclosion and oviposition rhythms in Drosophila melanogaster: evidence from limits of entrainment studies. Paranjpe DA; Anitha D; Joshi A; Sharma VK Chronobiol Int; 2004 Jul; 21(4-5):539-52. PubMed ID: 15470953 [TBL] [Abstract][Full Text] [Related]
16. Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis. Lankinen P; Forsman P J Biol Rhythms; 2006 Feb; 21(1):3-12. PubMed ID: 16461980 [TBL] [Abstract][Full Text] [Related]
17. Interacting effect of thermoperiod and photoperiod on the eclosion rhythm in the onion fly, Delia antiqua supports the two-oscillator model. Watari Y; Tanaka K J Insect Physiol; 2010 Sep; 56(9):1192-7. PubMed ID: 20346949 [TBL] [Abstract][Full Text] [Related]
18. Temperature sensitivity of circadian clocks is conserved across Drosophila species melanogaster, malerkotliana and ananassae. Prabhakaran PM; Sheeba V Chronobiol Int; 2014 Nov; 31(9):1008-16. PubMed ID: 25051431 [TBL] [Abstract][Full Text] [Related]
19. Photoperiod and temperature effects on the adult eclosion and mating rhythms in Pseudopidorus fasciata (Lepidoptera: Zygaenidae). Wu S; Refinetti R; Kok LT; Youngman RR; Reddy GV; Xue FS Environ Entomol; 2014 Dec; 43(6):1650-5. PubMed ID: 25479201 [TBL] [Abstract][Full Text] [Related]
20. Varying the length of dim nocturnal illumination differentially affects the pacemaker controlling the locomotor activity rhythm of Drosophila jambulina. Thakurdas P; Sharma S; Singh B; Vanlalhriatpuia K; Joshi D Chronobiol Int; 2011 May; 28(5):390-6. PubMed ID: 21721854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]