BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15332623)

  • 1. Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture.
    Gupta AK; Curtis AS
    J Mater Sci Mater Med; 2004 Apr; 15(4):493-6. PubMed ID: 15332623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors.
    Gupta AK; Curtis AS
    Biomaterials; 2004 Jul; 25(15):3029-40. PubMed ID: 14967536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis.
    Gupta AK; Berry C; Gupta M; Curtis A
    IEEE Trans Nanobioscience; 2003 Dec; 2(4):255-61. PubMed ID: 15376916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles.
    Gupta AK; Gupta M
    Biomaterials; 2005 May; 26(13):1565-73. PubMed ID: 15522758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro.
    Berry CC; Wells S; Charles S; Curtis AS
    Biomaterials; 2003 Nov; 24(25):4551-7. PubMed ID: 12950997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies.
    Gupta AK; Wells S
    IEEE Trans Nanobioscience; 2004 Mar; 3(1):66-73. PubMed ID: 15382647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell response to dextran-derivatised iron oxide nanoparticles post internalisation.
    Berry CC; Wells S; Charles S; Aitchison G; Curtis AS
    Biomaterials; 2004 Oct; 25(23):5405-13. PubMed ID: 15130725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of elastin-coated 520-nm- and 20-nm-diameter nanoparticles on human fibroblasts in vitro.
    Berry CC; Rudershausen S; Teller J; Curtis AS
    IEEE Trans Nanobioscience; 2002 Sep; 1(3):105-9. PubMed ID: 16696299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.
    Gupta AK; Gupta M
    Biomaterials; 2005 Jun; 26(18):3995-4021. PubMed ID: 15626447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors.
    Larsen EK; Nielsen T; Wittenborn T; Rydtoft LM; Lokanathan AR; Hansen L; Østergaard L; Kingshott P; Howard KA; Besenbacher F; Nielsen NC; Kjems J
    Nanoscale; 2012 Apr; 4(7):2352-61. PubMed ID: 22395568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling.
    Babic M; Horák D; Trchová M; Jendelová P; Glogarová K; Lesný P; Herynek V; Hájek M; Syková E
    Bioconjug Chem; 2008 Mar; 19(3):740-50. PubMed ID: 18288791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells.
    Petri-Fink A; Chastellain M; Juillerat-Jeanneret L; Ferrari A; Hofmann H
    Biomaterials; 2005 May; 26(15):2685-94. PubMed ID: 15585272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled coatings on individual monodisperse magnetite nanoparticles for efficient intracellular uptake.
    Zhang Y; Sun C; Kohler N; Zhang M
    Biomed Microdevices; 2004 Mar; 6(1):33-40. PubMed ID: 15307442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-vitro cytotoxicity and cell uptake study of gelatin-coated magnetic iron oxide nanoparticles.
    Gaihre B; Hee Lee Y; Khil MS; Yi HK; Kim HY
    J Microencapsul; 2011; 28(4):240-7. PubMed ID: 21545315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts.
    Gupta AK; Gupta M; Yarwood SJ; Curtis AS
    J Control Release; 2004 Mar; 95(2):197-207. PubMed ID: 14980768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture.
    Yu M; Huang S; Yu KJ; Clyne AM
    Int J Mol Sci; 2012; 13(5):5554-5570. PubMed ID: 22754315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of interaction of magnetic nanoparticles with breast cancer cells.
    Calero M; Chiappi M; Lazaro-Carrillo A; Rodríguez MJ; Chichón FJ; Crosbie-Staunton K; Prina-Mello A; Volkov Y; Villanueva A; Carrascosa JL
    J Nanobiotechnology; 2015 Feb; 13():16. PubMed ID: 25880445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging.
    Mahmoudi M; Simchi A; Imani M; Milani AS; Stroeve P
    J Phys Chem B; 2008 Nov; 112(46):14470-81. PubMed ID: 18729404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complementary approaches for the evaluation of biocompatibility of
    Antic B; Boskovic M; Nikodinovic-Runic J; Ming Y; Zhang H; Bozin ES; Janković D; Spasojevic V; Vranjes-Djuric S
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():157-164. PubMed ID: 28415449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery.
    Chen S; Li Y; Guo C; Wang J; Ma J; Liang X; Yang LR; Liu HZ
    Langmuir; 2007 Dec; 23(25):12669-76. PubMed ID: 17988160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.