These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15332950)

  • 1. New recurrence relations for the rapid evaluation of electron repulsion integrals based on the accompanying coordinate expansion formula.
    Kobayashi M; Nakai H
    J Chem Phys; 2004 Sep; 121(9):4050-8. PubMed ID: 15332950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accompanying coordinate expansion formulas derived with the solid harmonic gradient.
    Ishida K
    J Comput Chem; 2002 Feb; 23(3):378-93. PubMed ID: 11908501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extension of accompanying coordinate expansion and recurrence relation method for general-contraction basis sets.
    Hayami M; Seino J; Nakai H
    J Comput Chem; 2014 Jul; 35(20):1517-27. PubMed ID: 24889356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-electron integral evaluation on the graphics processor unit.
    Yasuda K
    J Comput Chem; 2008 Feb; 29(3):334-42. PubMed ID: 17614340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions.
    Hayami M; Seino J; Nakai H
    J Chem Phys; 2015 May; 142(20):204110. PubMed ID: 26026437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acceleration of High Angular Momentum Electron Repulsion Integrals and Integral Derivatives on Graphics Processing Units.
    Miao Y; Merz KM
    J Chem Theory Comput; 2015 Apr; 11(4):1449-62. PubMed ID: 26574356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Calculation of Molecular Integrals over London Atomic Orbitals.
    Irons TJP; Zemen J; Teale AM
    J Chem Theory Comput; 2017 Aug; 13(8):3636-3649. PubMed ID: 28692291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general formulation for the efficient evaluation of n-electron integrals over products of Gaussian charge distributions with Gaussian geminal functions.
    Komornicki A; King HF
    J Chem Phys; 2011 Jun; 134(24):244115. PubMed ID: 21721620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Communication: An efficient algorithm for evaluating the Breit and spin-spin coupling integrals.
    Shiozaki T
    J Chem Phys; 2013 Mar; 138(11):111101. PubMed ID: 23534619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward the Minimal Floating Operation Count Cholesky Decomposition of Electron Repulsion Integrals.
    Zhang T; Liu X; Valeev EF; Li X
    J Phys Chem A; 2021 May; 125(19):4258-4265. PubMed ID: 33970626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical evaluation of electron repulsion integrals for pseudoatomic orbitals and their derivatives.
    Toyoda M; Ozaki T
    J Chem Phys; 2009 Mar; 130(12):124114. PubMed ID: 19334815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An algorithm for the efficient evaluation of two-electron repulsion integrals over contracted Gaussian-type basis functions.
    Sandberg JA; Rinkevicius Z
    J Chem Phys; 2012 Dec; 137(23):234105. PubMed ID: 23267469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical instabilities in the computation of pseudopotential matrix elements.
    van Wüllen C
    J Comput Chem; 2006 Jan; 27(2):135-41. PubMed ID: 16302223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Half-numerical evaluation of pseudopotential integrals.
    Flores-Moreno R; Alvarez-Mendez RJ; Vela A; Köster AM
    J Comput Chem; 2006 Jul; 27(9):1009-19. PubMed ID: 16628539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of atomic integrals for hybrid Gaussian type and plane-wave basis functions via the McMurchie-Davidson recursion formula.
    Tachikawa M; Shiga M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056706. PubMed ID: 11736140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double asymptotic expansion of three-center electronic repulsion integrals.
    Alvarez-Ibarra A; Köster AM
    J Chem Phys; 2013 Jul; 139(2):024102. PubMed ID: 23862924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid CPU/GPU method for Hartree-Fock self-consistent-field calculation.
    Qi J; Zhang Y; Yang M
    J Chem Phys; 2023 Sep; 159(10):. PubMed ID: 37681693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals.
    Kurashige Y; Nakajima T; Hirao K
    J Chem Phys; 2007 Apr; 126(14):144106. PubMed ID: 17444700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. libreta: Computerized Optimization and Code Synthesis for Electron Repulsion Integral Evaluation.
    Zhang J
    J Chem Theory Comput; 2018 Feb; 14(2):572-587. PubMed ID: 29241013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient evaluation of the geometrical first derivatives of three-center Coulomb integrals.
    Samu G; Kállay M
    J Chem Phys; 2018 Sep; 149(12):124101. PubMed ID: 30278674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.