These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 15333635)

  • 1. Promiscuous target interactions in the mariner transposon Himar1.
    Lipkow K; Buisine N; Chalmers R
    J Biol Chem; 2004 Nov; 279(47):48569-75. PubMed ID: 15333635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early intermediates of mariner transposition: catalysis without synapsis of the transposon ends suggests a novel architecture of the synaptic complex.
    Lipkow K; Buisine N; Lampe DJ; Chalmers R
    Mol Cell Biol; 2004 Sep; 24(18):8301-11. PubMed ID: 15340089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural role of the flanking DNA in mariner transposon excision.
    Dornan J; Grey H; Richardson JM
    Nucleic Acids Res; 2015 Feb; 43(4):2424-32. PubMed ID: 25662605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics.
    Tosi LR; Beverley SM
    Nucleic Acids Res; 2000 Feb; 28(3):784-90. PubMed ID: 10637331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of transposase activity within a transpososome by the configuration of the flanking DNA segment of the transposon.
    Mizuuchi M; Rice PA; Wardle SJ; Haniford DB; Mizuuchi K
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14622-7. PubMed ID: 17785414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transposition of Mboumar-9: identification of a new naturally active mariner-family transposon.
    Muñoz-López M; Siddique A; Bischerour J; Lorite P; Chalmers R; Palomeque T
    J Mol Biol; 2008 Oct; 382(3):567-72. PubMed ID: 18675277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of ISCth4 transpososomes reveal the role of asymmetry in copy-out/paste-in DNA transposition.
    Kosek D; Hickman AB; Ghirlando R; He S; Dyda F
    EMBO J; 2021 Jan; 40(1):e105666. PubMed ID: 33006208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosstalk between transposase subunits during cleavage of the mariner transposon.
    Claeys Bouuaert C; Walker N; Liu D; Chalmers R
    Nucleic Acids Res; 2014 May; 42(9):5799-808. PubMed ID: 24623810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote.
    Richardson JM; Colloms SD; Finnegan DJ; Walkinshaw MD
    Cell; 2009 Sep; 138(6):1096-108. PubMed ID: 19766564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of a RAG-like transposase during cut-and-paste transposition.
    Liu C; Yang Y; Schatz DG
    Nature; 2019 Nov; 575(7783):540-544. PubMed ID: 31723264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase.
    Liu D; Bischerour J; Siddique A; Buisine N; Bigot Y; Chalmers R
    Mol Cell Biol; 2007 Feb; 27(3):1125-32. PubMed ID: 17130240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperactive Himar1 transposase mediates transposition in cell culture and enhances gene expression in vivo.
    Keravala A; Liu D; Lechman ER; Wolfe D; Nash JA; Lampe DJ; Robbins PD
    Hum Gene Ther; 2006 Oct; 17(10):1006-18. PubMed ID: 16989604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria.
    Rubin EJ; Akerley BJ; Novik VN; Lampe DJ; Husson RN; Mekalanos JJ
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1645-50. PubMed ID: 9990078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted DNA transposition in vitro using a dCas9-transposase fusion protein.
    Bhatt S; Chalmers R
    Nucleic Acids Res; 2019 Sep; 47(15):8126-8135. PubMed ID: 31429873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target capture during Mos1 transposition.
    Pflieger A; Jaillet J; Petit A; Augé-Gouillou C; Renault S
    J Biol Chem; 2014 Jan; 289(1):100-11. PubMed ID: 24269942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of multiple binding sites for the THAP domain of the Galileo transposase in the long terminal inverted-repeats.
    Marzo M; Liu D; Ruiz A; Chalmers R
    Gene; 2013 Aug; 525(1):84-91. PubMed ID: 23648487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple topological filter in a eukaryotic transposon as a mechanism to suppress genome instability.
    Claeys Bouuaert C; Liu D; Chalmers R
    Mol Cell Biol; 2011 Jan; 31(2):317-27. PubMed ID: 21041479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences.
    Atkinson H; Chalmers R
    Genetica; 2010 May; 138(5):485-98. PubMed ID: 20084428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed integration of transgenes: transposons revisited using DNA-binding-domain technologies.
    Demattei MV; Thomas X; Carnus E; Augé-Gouillou C; Renault S
    Genetica; 2010 May; 138(5):531-40. PubMed ID: 19662501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons.
    Claeys Bouuaert C; Chalmers RM
    Genetica; 2010 May; 138(5):473-84. PubMed ID: 19649713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.