BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 15333951)

  • 1. Optimum solubility (OS) screening: an efficient method to optimize buffer conditions for homogeneity and crystallization of proteins.
    Jancarik J; Pufan R; Hong C; Kim SH; Kim R
    Acta Crystallogr D Biol Crystallogr; 2004 Sep; 60(Pt 9):1670-3. PubMed ID: 15333951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of a preliminary solubility screen to improve crystallization trials: uncoupling crystal condition searches.
    Izaac A; Schall CA; Mueser TC
    Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):833-42. PubMed ID: 16790940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-throughput assay of membrane protein stability.
    Postis VL; Deacon SE; Roach PC; Wright GS; Xia X; Ingram JC; Hadden JM; Henderson PJ; Phillips SE; McPherson MJ; Baldwin SA
    Mol Membr Biol; 2008 Dec; 25(8):617-24. PubMed ID: 19016381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput pH optimization of protein crystallization.
    Meged R; Dym O; Sussman JL
    Methods Mol Biol; 2008; 426():411-8. PubMed ID: 18542880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermofluor-based high-throughput stability optimization of proteins for structural studies.
    Ericsson UB; Hallberg BM; Detitta GT; Dekker N; Nordlund P
    Anal Biochem; 2006 Oct; 357(2):289-98. PubMed ID: 16962548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of buffer solutions for protein crystallization.
    Gosavi RA; Mueser TC; Schall CA
    Acta Crystallogr D Biol Crystallogr; 2008 May; 64(Pt 5):506-14. PubMed ID: 18453686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermofluor-based optimization strategy for the stabilization and crystallization of Campylobacter jejuni desulforubrerythrin.
    Santos SP; Bandeiras TM; Pinto AF; Teixeira M; Carrondo MA; Romão CV
    Protein Expr Purif; 2012 Feb; 81(2):193-200. PubMed ID: 22051151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated analysis of vapor diffusion crystallization drops with an X-ray beam.
    Jacquamet L; Ohana J; Joly J; Borel F; Pirocchi M; Charrault P; Bertoni A; Israel-Gouy P; Carpentier P; Kozielski F; Blot D; Ferrer JL
    Structure; 2004 Jul; 12(7):1219-25. PubMed ID: 15242598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for improving crystallization success rates.
    Page R
    Methods Mol Biol; 2008; 426():345-62. PubMed ID: 18542875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization of soluble proteins in vapor diffusion for x-ray crystallography.
    Benvenuti M; Mangani S
    Nat Protoc; 2007; 2(7):1633-51. PubMed ID: 17641629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life in the fast lane for protein crystallization and X-ray crystallography.
    Pusey ML; Liu ZJ; Tempel W; Praissman J; Lin D; Wang BC; Gavira JA; Ng JD
    Prog Biophys Mol Biol; 2005 Jul; 88(3):359-86. PubMed ID: 15652250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein crystallization in restricted geometry: advancing old ideas for modern times in structural proteomics.
    Ng JD; Stevens RC; Kuhn P
    Methods Mol Biol; 2008; 426():363-76. PubMed ID: 18542876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization Optimum Solubility Screening: using crystallization results to identify the optimal buffer for protein crystal formation.
    Collins B; Stevens RC; Page R
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Dec; 61(Pt 12):1035-8. PubMed ID: 16511228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression, purification, and aggregation studies of His-tagged thermoalkalophilic lipase from Bacillus thermocatenulatus.
    Schlieben NH; Niefind K; Schomburg D
    Protein Expr Purif; 2004 Mar; 34(1):103-10. PubMed ID: 14766305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a novel ampholyte buffer for isoelectric focusing: electric charge-separation of protein samples for X-ray crystallography using free-flow isoelectric focusing.
    Kim SH; Miyatake H; Ueno T; Nagao T; Miki K
    Acta Crystallogr D Biol Crystallogr; 2005 Jun; 61(Pt 6):799-802. PubMed ID: 15930643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approach to quality management in structural biology: biophysical selection of proteins for successful crystallization.
    Niesen FH; Koch A; Lenski U; Harttig U; Roske Y; Heinemann U; Hofmann KP
    J Struct Biol; 2008 Jun; 162(3):451-9. PubMed ID: 18440827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The high-throughput protein-to-structure pipeline at SECSG.
    Liu ZJ; Tempel W; Ng JD; Lin D; Shah AK; Chen L; Horanyi PS; Habel JE; Kataeva IA; Xu H; Yang H; Chang JC; Huang L; Chang SH; Zhou W; Lee D; Praissman JL; Zhang H; Newton MG; Rose JP; Richardson JS; Richardson DC; Wang BC
    Acta Crystallogr D Biol Crystallogr; 2005 Jun; 61(Pt 6):679-84. PubMed ID: 15930619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attempts to rationalize protein crystallization using relative crystallizability.
    Zhu DW; Garneau A; Mazumdar M; Zhou M; Xu GJ; Lin SX
    J Struct Biol; 2006 Jun; 154(3):297-302. PubMed ID: 16651006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scientific approach to the optimization of protein crystallization conditions for microgravity experiments.
    Yoshizaki I; Nakamura H; Fukuyama S; Komatsu H; Yoda S
    Ann N Y Acad Sci; 2004 Nov; 1027():28-47. PubMed ID: 15644343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycerol concentrations required for the successful vitrification of cocktail conditions in a high-throughput crystallization screen.
    Kempkes R; Stofko E; Lam K; Snell EH
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):287-301. PubMed ID: 18323624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.