These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 15336225)

  • 21. Discovery of the Lyme disease spirochete and its relation to tick vectors.
    Burgdorfer W
    Yale J Biol Med; 1984; 57(4):515-20. PubMed ID: 6516454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ecology of Borrelia burgdorferi sensu lato in Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change.
    Mannelli A; Bertolotti L; Gern L; Gray J
    FEMS Microbiol Rev; 2012 Jul; 36(4):837-61. PubMed ID: 22091928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Lyme disease--a tick-transmitted spirochete infection].
    Steere AC
    Ter Arkh; 1987; 59(4):32-4. PubMed ID: 3590002
    [No Abstract]   [Full Text] [Related]  

  • 24. Discovery of the Lyme disease spirochete: a historical review.
    Burgdorfer W
    Zentralbl Bakteriol Mikrobiol Hyg A; 1986 Dec; 263(1-2):7-10. PubMed ID: 3554846
    [No Abstract]   [Full Text] [Related]  

  • 25. Widespread dispersal of Borrelia burgdorferi-infected ticks collected from songbirds across Canada.
    Scott JD; Anderson JF; Durden LA
    J Parasitol; 2012 Feb; 98(1):49-59. PubMed ID: 21864130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Refeeding activity of immature ticks of Ixodes persulcatus and transmission of Lyme disease spirochete by partially fed larvae.
    Nakao M; Sato Y
    J Parasitol; 1996 Aug; 82(4):669-72. PubMed ID: 8691387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term survival of Borrelia burgdorferi lacking the hibernation promotion factor homolog in the unfed tick vector.
    Fazzino L; Tilly K; Dulebohn DP; Rosa PA
    Infect Immun; 2015 Dec; 83(12):4800-10. PubMed ID: 26438790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Motility is crucial for the infectious life cycle of Borrelia burgdorferi.
    Sultan SZ; Manne A; Stewart PE; Bestor A; Rosa PA; Charon NW; Motaleb MA
    Infect Immun; 2013 Jun; 81(6):2012-21. PubMed ID: 23529620
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Aranjuez GF; Kuhn HW; Adams PP; Jewett MW
    Infect Immun; 2019 Mar; 87(5):. PubMed ID: 30782856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential survival of Lyme borreliosis spirochetes in ticks that feed on birds.
    Kurtenbach K; Schäfer SM; Sewell HS; Peacey M; Hoodless A; Nuttall PA; Randolph SE
    Infect Immun; 2002 Oct; 70(10):5893-5. PubMed ID: 12228325
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolving models of Lyme disease spirochete gene regulation.
    Stevenson B; von Lackum K; Riley SP; Cooley AE; Woodman ME; Bykowski T
    Wien Klin Wochenschr; 2006 Nov; 118(21-22):643-52. PubMed ID: 17160602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasticity in early immune evasion strategies of a bacterial pathogen.
    Bernard Q; Smith AA; Yang X; Koci J; Foor SD; Cramer SD; Zhuang X; Dwyer JE; Lin YP; Mongodin EF; Marques A; Leong JM; Anguita J; Pal U
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):E3788-E3797. PubMed ID: 29610317
    [No Abstract]   [Full Text] [Related]  

  • 33. Borrelia burgdorferi lacking BBK32, a fibronectin-binding protein, retains full pathogenicity.
    Li X; Liu X; Beck DS; Kantor FS; Fikrig E
    Infect Immun; 2006 Jun; 74(6):3305-13. PubMed ID: 16714558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission.
    Caimano MJ; Dunham-Ems S; Allard AM; Cassera MB; Kenedy M; Radolf JD
    Infect Immun; 2015 Aug; 83(8):3043-60. PubMed ID: 25987708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suppression of Th2 cytokines reduces tick-transmitted Borrelia burgdorferi load in mice.
    Zeidner NS; Schneider BS; Rutherford JS; Dolan MC
    J Parasitol; 2008 Jun; 94(3):767-9. PubMed ID: 18605798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA microarray analysis of differential gene expression in Borrelia burgdorferi, the Lyme disease spirochete.
    Revel AT; Talaat AM; Norgard MV
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1562-7. PubMed ID: 11830671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental infection of the eastern chipmunk (Tamias striatus) with the Lyme disease spirochete (Borrelia burgdorferi).
    McLean RG; Ubico SR; Cooksey LM
    J Wildl Dis; 1993 Oct; 29(4):527-32. PubMed ID: 8258849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two Photon Intravital Microscopy of Lyme Borrelia in Mice.
    Belperron AA; Mao J; Bockenstedt LK
    Methods Mol Biol; 2018; 1690():279-290. PubMed ID: 29032551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changing of the guard: How the Lyme disease spirochete subverts the host immune response.
    Chaconas G; Castellanos M; Verhey TB
    J Biol Chem; 2020 Jan; 295(2):301-313. PubMed ID: 31753921
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Borrelia burgdorferi-induced inflammation facilitates spirochete adaptation and variable major protein-like sequence locus recombination.
    Anguita J; Thomas V; Samanta S; Persinski R; Hernanz C; Barthold SW; Fikrig E
    J Immunol; 2001 Sep; 167(6):3383-90. PubMed ID: 11544329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.