BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 15336605)

  • 1. Family 2 cystatins inhibit osteoclast-mediated bone resorption in calvarial bone explants.
    Brand HS; Lerner UH; Grubb A; Beertsen W; Nieuw Amerongen AV; Everts V
    Bone; 2004 Sep; 35(3):689-96. PubMed ID: 15336605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different cysteine proteinases involved in bone resorption and osteoclast formation.
    Brage M; Abrahamson M; Lindström V; Grubb A; Lerner UH
    Calcif Tissue Int; 2005 Jun; 76(6):439-47. PubMed ID: 15906014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone.
    Everts V; Korper W; Hoeben KA; Jansen ID; Bromme D; Cleutjens KB; Heeneman S; Peters C; Reinheckel T; Saftig P; Beertsen W
    J Bone Miner Res; 2006 Sep; 21(9):1399-408. PubMed ID: 16939398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasminogen activators are involved in the degradation of bone by osteoclasts.
    Everts V; Daci E; Tigchelaar-Gutter W; Hoeben KA; Torrekens S; Carmeliet G; Beertsen W
    Bone; 2008 Nov; 43(5):915-20. PubMed ID: 18691680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A peptidyl derivative structurally based on the inhibitory center of cystatin C inhibits bone resorption in vitro.
    Johansson L; Grubb A; Abrahamson M; Kasprzykowski F; Kasprzykowska R; Grzonka Z; Lerner UH
    Bone; 2000 May; 26(5):451-9. PubMed ID: 10773584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cystatin C, and inhibitor of bone resorption produced by osteoblasts.
    Lerner UH; Johansson L; Ranjsö M; Rosenquist JB; Reinholt FP; Grubb A
    Acta Physiol Scand; 1997 Sep; 161(1):81-92. PubMed ID: 9381954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cystatin B as an intracellular modulator of bone resorption.
    Laitala-Leinonen T; Rinne R; Saukko P; Väänänen HK; Rinne A
    Matrix Biol; 2006 Apr; 25(3):149-57. PubMed ID: 16321512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human cystatin C, a cysteine proteinase inhibitor, inhibits bone resorption in vitro stimulated by parathyroid hormone and parathyroid hormone-related peptide of malignancy.
    Lerner UH; Grubb A
    J Bone Miner Res; 1992 Apr; 7(4):433-40. PubMed ID: 1319105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases.
    Everts V; Delaissé JM; Korper W; Niehof A; Vaes G; Beertsen W
    J Cell Physiol; 1992 Feb; 150(2):221-31. PubMed ID: 1734028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relative contribution of cysteine proteinases and matrix metalloproteinases to the resorption process in osteoclasts derived from long bone and scapula.
    Shorey S; Heersche JN; Manolson MF
    Bone; 2004 Oct; 35(4):909-17. PubMed ID: 15454098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine proteinases and matrix metalloproteinases play distinct roles in the subosteoclastic resorption zone.
    Everts V; Delaissé JM; Korper W; Beertsen W
    J Bone Miner Res; 1998 Sep; 13(9):1420-30. PubMed ID: 9738514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of bone resorption by selective inactivators of cysteine proteinases.
    Hill PA; Buttle DJ; Jones SJ; Boyde A; Murata M; Reynolds JJ; Meikle MC
    J Cell Biochem; 1994 Sep; 56(1):118-30. PubMed ID: 7806585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts: evidence for steady-state disposal and intracellular functional compartmentalization of calcium.
    Berger CE; Rathod H; Gillespie JI; Horrocks BR; Datta HK
    J Bone Miner Res; 2001 Nov; 16(11):2092-102. PubMed ID: 11697806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cystatin C in milk basic protein (MBP) and its inhibitory effect on bone resorption in vitro.
    Matsuoka Y; Serizawa A; Yoshioka T; Yamamura J; Morita Y; Kawakami H; Toba Y; Takada Y; Kumegawa M
    Biosci Biotechnol Biochem; 2002 Dec; 66(12):2531-6. PubMed ID: 12596844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology of osteoclasts in resorbing fetal rat bone explants: effects of PTH and AIF in vitro.
    Wezeman FH; Kuettner KE; Horton JE
    Anat Rec; 1979 Jul; 194(3):311-23. PubMed ID: 224732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of heparin on osteoclast activity.
    Chowdhury MH; Hamada C; Dempster DW
    J Bone Miner Res; 1992 Jul; 7(7):771-7. PubMed ID: 1642146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitroblue tetrazolium reduction and bone resorption by osteoclasts in vitro inhibited by a manganese-based superoxide dismutase mimic.
    Ries WL; Key LL; Rodriguiz RM
    J Bone Miner Res; 1992 Aug; 7(8):931-9. PubMed ID: 1442207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A useful method to evaluate bone resorption inhibitors, using osteoclast-like multinucleated cells.
    Sugawara K; Hamada M; Hosoi S; Tamaoki T
    Anal Biochem; 1998 Jan; 255(2):204-10. PubMed ID: 9451505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of cathepsin K accelerates the resorption cycle and osteoblast differentiation in vitro.
    Morko J; Kiviranta R; Mulari MT; Ivaska KK; Väänänen HK; Vuorio E; Laitala-Leinonen T
    Bone; 2009 Apr; 44(4):717-28. PubMed ID: 19118660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in the ultrastructural assessment of osteoclastic resorptive functions.
    Sasaki T
    Microsc Res Tech; 1996 Feb; 33(2):182-91. PubMed ID: 8845517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.