These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15336927)

  • 1. Design and validation of a bioreactor for engineering vocal fold tissues under combined tensile and vibrational stresses.
    Titze IR; Hitchcock RW; Broadhead K; Webb K; Li W; Gray SD; Tresco PA
    J Biomech; 2004 Oct; 37(10):1521-9. PubMed ID: 15336927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain distribution in an elastic substrate vibrated in a bioreactor for vocal fold tissue engineering.
    Titze IR; Broadhead K; Tresco P; Gray S
    J Biomech; 2005 Dec; 38(12):2406-14. PubMed ID: 16214488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a novel phonomimetic bioreactor.
    Kirsch A; Hortobagyi D; Stachl T; Karbiener M; Grossmann T; Gerstenberger C; Gugatschka M
    PLoS One; 2019; 14(3):e0213788. PubMed ID: 30870529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The response of vocal fold fibroblasts and mesenchymal stromal cells to vibration.
    Gaston J; Quinchia Rios B; Bartlett R; Berchtold C; Thibeault SL
    PLoS One; 2012; 7(2):e30965. PubMed ID: 22359557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a mechanical larynx with agarose as a soft tissue substitute for vocal fold applications.
    Choo JQ; Lau DP; Chui CK; Yang T; Chng CB; Teoh SH
    J Biomech Eng; 2010 Jun; 132(6):065001. PubMed ID: 20887039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibration stimulates vocal mucosa-like matrix expression by hydrogel-encapsulated fibroblasts.
    Kutty JK; Webb K
    J Tissue Eng Regen Med; 2010 Jan; 4(1):62-72. PubMed ID: 19842110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and performance of a bioreactor system for mechanically promoted three-dimensional tissue engineering.
    Meyer U; Büchter A; Nazer N; Wiesmann HP
    Br J Oral Maxillofac Surg; 2006 Apr; 44(2):134-40. PubMed ID: 15964109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanotransduction of vocal fold fibroblasts and mesenchymal stromal cells in the context of the vocal fold mechanome.
    Bartlett RS; Gaston JD; Ye S; Kendziorski C; Thibeault SL
    J Biomech; 2019 Jan; 83():227-234. PubMed ID: 30553439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics and Responses of Human Vocal Fold Cells in a Vibrational Culture Model.
    Kim D; Lee S; Lim JY; Kwon S
    Laryngoscope; 2018 Jul; 128(7):E258-E264. PubMed ID: 29392734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Visualization of the vibratory movements of the vocal cords under asymmetrical conditions].
    Ouaknine M; Fernandes M; Giovanni A
    Rev Laryngol Otol Rhinol (Bord); 2000; 121(5):297-300. PubMed ID: 11387652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Vibrational Culture Model Mimicking Vocal Fold Tissues.
    Kim D; Lim JY; Kwon S
    Ann Biomed Eng; 2016 Oct; 44(10):3136-3143. PubMed ID: 26951463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs.
    Webb K; Hitchcock RW; Smeal RM; Li W; Gray SD; Tresco PA
    J Biomech; 2006; 39(6):1136-44. PubMed ID: 16256125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of bioreactor induced vibrational stimulation on extracellular matrix production from human derived fibroblasts.
    Wolchok JC; Brokopp C; Underwood CJ; Tresco PA
    Biomaterials; 2009 Jan; 30(3):327-35. PubMed ID: 18937972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and characterization of a novel vocal fold bioreactor.
    Zerdoum AB; Tong Z; Bachman B; Jia X
    J Vis Exp; 2014 Aug; (90):e51594. PubMed ID: 25145349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell viability viscoelastic measurement in a rheometer used to stress and engineer tissues at low sonic frequencies.
    Klemuk SA; Jaiswal S; Titze IR
    J Acoust Soc Am; 2008 Oct; 124(4):2330-9. PubMed ID: 19062871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Further research on the vibratory mechanism of the larynx].
    Vallancien B
    Acta Otorhinolaryngol Belg; 1972; 26(6):725-40. PubMed ID: 4669686
    [No Abstract]   [Full Text] [Related]  

  • 17. Modulating the behaviors of mesenchymal stem cells via the combination of high-frequency vibratory stimulations and fibrous scaffolds.
    Tong Z; Duncan RL; Jia X
    Tissue Eng Part A; 2013 Aug; 19(15-16):1862-78. PubMed ID: 23516973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in expression of extracellular matrix genes, fibrogenic factors, and actin cytoskeletal organization in retinol treated and untreated vocal fold stellate cells.
    Fuja TJ; Probst-Fuja MN; Titze IR
    Matrix Biol; 2006 Jan; 25(1):59-67. PubMed ID: 16253491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Flow Perfusion Bioreactor System for Vocal Fold Tissue Engineering Applications.
    Latifi N; Heris HK; Thomson SL; Taher R; Kazemirad S; Sheibani S; Li-Jessen NY; Vali H; Mongeau L
    Tissue Eng Part C Methods; 2016 Sep; 22(9):823-38. PubMed ID: 27537192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of superior surface strains and stresses, and vocal fold contact pressure in a synthetic larynx model using digital image correlation.
    Spencer M; Siegmund T; Mongeau L
    J Acoust Soc Am; 2008 Feb; 123(2):1089-103. PubMed ID: 18247910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.