These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 15337302)

  • 21. Zonisamide enhances delta receptor-associated neurotransmitter release in striato-pallidal pathway.
    Yamamura S; Ohoyama K; Nagase H; Okada M
    Neuropharmacology; 2009 Sep; 57(3):322-31. PubMed ID: 19482038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Valproic acid potentiates both typical and atypical antipsychotic-induced prefrontal cortical dopamine release.
    Ichikawa J; Chung YC; Dai J; Meltzer HY
    Brain Res; 2005 Aug; 1052(1):56-62. PubMed ID: 16061211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antagonistic interaction between adenosine A2A receptors and dopamine D2 receptors in the ventral striopallidal system. Implications for the treatment of schizophrenia.
    Ferré S; O'Connor WT; Snaprud P; Ungerstedt U; Fuxe K
    Neuroscience; 1994 Dec; 63(3):765-73. PubMed ID: 7898676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antipsychotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action.
    Kapur S; Seeman P
    J Psychiatry Neurosci; 2000 Mar; 25(2):161-6. PubMed ID: 10740989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Typical and atypical antipsychotic drugs target dopamine and cyclic AMP-regulated phosphoprotein, 32 kDa and neurotensin-containing neurons, but not GABAergic interneurons in the shell of nucleus accumbens of ventral striatum.
    Ma J; Ye N; Cohen BM
    Neuroscience; 2006 Sep; 141(3):1469-80. PubMed ID: 16781818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of typical and atypical antipsychotic drugs on neurotensin-containing neurons in the central nervous system.
    Kinkead B; Nemeroff CB
    J Clin Psychiatry; 1994 Sep; 55 Suppl B():30-2. PubMed ID: 7961568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NR2A and NR2B subunit containing NMDA receptors differentially regulate striatal output pathways.
    Fantin M; Marti M; Auberson YP; Morari M
    J Neurochem; 2007 Dec; 103(6):2200-11. PubMed ID: 17986236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clozapine increases both acetylcholine and dopamine release in rat ventral hippocampus: role of 5-HT1A receptor agonism.
    Chung YC; Li Z; Dai J; Meltzer HY; Ichikawa J
    Brain Res; 2004 Oct; 1023(1):54-63. PubMed ID: 15364019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dopamine receptor regulation of ethanol intake and extracellular dopamine levels in the ventral pallidum of alcohol preferring (P) rats.
    Melendez RI; Rodd ZA; McBride WJ; Murphy JM
    Drug Alcohol Depend; 2005 Mar; 77(3):293-301. PubMed ID: 15734229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single administration of 1-benzyl-1,2,3,4-tetrahydroisoquinoline increases the extracellular concentration of dopamine in rat striatum.
    Katagiri N; Abe K; Kitabatake M; Utsunomiya I; Horiguchi Y; Hoshi K; Taguchi K
    Neuroscience; 2009 Jun; 160(4):820-8. PubMed ID: 19285542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Blockade of globus pallidus adenosine A(2A) receptors displays antiparkinsonian activity in 6-hydroxydopamine-lesioned rats treated with D(1) or D(2) dopamine receptor agonists.
    Simola N; Fenu S; Baraldi PG; Tabrizi MA; Morelli M
    Synapse; 2008 May; 62(5):345-51. PubMed ID: 18297692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alcohol stimulates the release of dopamine in the ventral pallidum but not in the globus pallidus: a dual-probe microdialysis study.
    Melendez RI; Rodd-Henricks ZA; McBride WJ; Murphy JM
    Neuropsychopharmacology; 2003 May; 28(5):939-46. PubMed ID: 12637946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dopamine D2 and D3 receptors in human putamen, caudate nucleus, and globus pallidus.
    Seeman P; Wilson A; Gmeiner P; Kapur S
    Synapse; 2006 Sep; 60(3):205-11. PubMed ID: 16739118
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atypical and typical antipsychotic drug interactions with the dopamine D2 receptor.
    Hjerde E; Dahl SG; Sylte I
    Eur J Med Chem; 2005 Feb; 40(2):185-94. PubMed ID: 15694653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuropharmacology of second-generation antipsychotic drugs: a validity of the serotonin-dopamine hypothesis.
    Kuroki T; Nagao N; Nakahara T
    Prog Brain Res; 2008; 172():199-212. PubMed ID: 18772034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Globus pallidus dopamine and Parkinson motor subtypes: clinical and brain biochemical correlation.
    Rajput AH; Sitte HH; Rajput A; Fenton ME; Pifl C; Hornykiewicz O
    Neurology; 2008 Apr; 70(16 Pt 2):1403-10. PubMed ID: 18172064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Augmentation of antipsychotic-induced neurochemical changes by the NK3 receptor antagonist talnetant (SB-223412).
    de la Flor R; Dawson LA
    Neuropharmacology; 2009 Feb; 56(2):342-9. PubMed ID: 18822303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The atypical antipsychotic quetiapine increases both noradrenaline and dopamine release in the rat prefrontal cortex.
    Pira L; Mongeau R; Pani L
    Eur J Pharmacol; 2004 Nov; 504(1-2):61-4. PubMed ID: 15507222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extrapyramidal syndromes in nonhuman primates: typical and atypical neuroleptics.
    Casey DE
    Psychopharmacol Bull; 1991; 27(1):47-50. PubMed ID: 1677773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. What's atypical about atypical antipsychotic drugs?
    Meltzer HY
    Curr Opin Pharmacol; 2004 Feb; 4(1):53-7. PubMed ID: 15018839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.