These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Ligand binding properties of myoglobin reconstituted with iron porphycene: unusual O2 binding selectivity against CO binding. Matsuo T; Dejima H; Hirota S; Murata D; Sato H; Ikegami T; Hori H; Hisaeda Y; Hayashi T J Am Chem Soc; 2004 Dec; 126(49):16007-17. PubMed ID: 15584735 [TBL] [Abstract][Full Text] [Related]
6. A new way to understand quaternary structure changes of hemoglobin upon ligand binding on the basis of UV-resonance Raman evaluation of intersubunit interactions. Nagatomo S; Nagai M; Kitagawa T J Am Chem Soc; 2011 Jul; 133(26):10101-10. PubMed ID: 21615086 [TBL] [Abstract][Full Text] [Related]
7. Heme structures of five variants of hemoglobin M probed by resonance Raman spectroscopy. Jin Y; Nagai M; Nagai Y; Nagatomo S; Kitagawa T Biochemistry; 2004 Jul; 43(26):8517-27. PubMed ID: 15222763 [TBL] [Abstract][Full Text] [Related]
8. Asymmetric distribution of cooperativity in the binding cascade of normal human hemoglobin. 1. Cooperative and noncooperative oxygen binding in Zn-substituted hemoglobin. Holt JM; Klinger AL; Yarian CS; Keelara V; Ackers GK Biochemistry; 2005 Sep; 44(36):11925-38. PubMed ID: 16142891 [TBL] [Abstract][Full Text] [Related]
9. The crystal structure of bar-headed goose hemoglobin in deoxy form: the allosteric mechanism of a hemoglobin species with high oxygen affinity. Liang Y; Hua Z; Liang X; Xu Q; Lu G J Mol Biol; 2001 Oct; 313(1):123-37. PubMed ID: 11601851 [TBL] [Abstract][Full Text] [Related]
10. Intersubunit communication via changes in hemoglobin quaternary structures revealed by time-resolved resonance Raman spectroscopy: direct observation of the Perutz mechanism. Yamada K; Ishikawa H; Mizuno M; Shibayama N; Mizutani Y J Phys Chem B; 2013 Oct; 117(41):12461-8. PubMed ID: 24067234 [TBL] [Abstract][Full Text] [Related]
11. Substitution of the heme binding module in hemoglobin alpha- and beta-subunits. Implication for different regulation mechanisms of the heme proximal structure between hemoglobin and myoglobin. Inaba K; Ishimori K; Imai K; Morishima I J Biol Chem; 2000 Apr; 275(17):12438-45. PubMed ID: 10777528 [TBL] [Abstract][Full Text] [Related]
12. Differences between protein dynamics of hemoglobin upon dissociation of oxygen and carbon monoxide. Murakawa Y; Nagai M; Mizutani Y J Am Chem Soc; 2012 Jan; 134(3):1434-7. PubMed ID: 22239407 [TBL] [Abstract][Full Text] [Related]
13. Contribution of heme-propionate side chains to structure and function of myoglobin: chemical approach by artificially created prosthetic groups. Hayashi T; Matsuo T; Hitomi Y; Okawa K; Suzuki A; Shiro Y; Iizuka T; Hisaeda Y; Ogoshi H J Inorg Biochem; 2002 Jul; 91(1):94-100. PubMed ID: 12121766 [TBL] [Abstract][Full Text] [Related]
14. High-resolution crystal structure of magnesium (MgII)-iron (FeII) hybrid hemoglobin with liganded beta subunits. Park SY; Nakagawa A; Morimoto H J Mol Biol; 1996 Feb; 255(5):726-34. PubMed ID: 8636974 [TBL] [Abstract][Full Text] [Related]
15. Observation of an isotope-sensitive low-frequency Raman band specific to metmyoglobin. Hirota S; Mizoguchi Y; Yamauchi O; Kitagawa T J Biol Inorg Chem; 2002 Jan; 7(1-2):217-21. PubMed ID: 11862557 [TBL] [Abstract][Full Text] [Related]
16. Intersubunit interactions associated with Tyr42 alpha stabilize the quaternary-T tetramer but are not major quaternary constraints in deoxyhemoglobin. Kavanaugh JS; Rogers PH; Arnone A; Hui HL; Wierzba A; DeYoung A; Kwiatkowski LD; Noble RW; Juszczak LJ; Peterson ES; Friedman JM Biochemistry; 2005 Mar; 44(10):3806-20. PubMed ID: 15751957 [TBL] [Abstract][Full Text] [Related]
17. The impact of altered protein-heme interactions on the resonance Raman spectra of heme proteins. Studies of heme rotational disorder. Rwere F; Mak PJ; Kincaid JR Biopolymers; 2008 Mar; 89(3):179-86. PubMed ID: 18008322 [TBL] [Abstract][Full Text] [Related]