These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 15337845)

  • 21. Characterization of pre-rRNA components in ribosomal precursor particles from macronuclei of Tetrahymena thermophila.
    Müller B; Eckert WA
    Eur J Cell Biol; 1989 Aug; 49(2):225-35. PubMed ID: 2776772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exon sequences distant from the splice junction are required for efficient self-splicing of the Tetrahymena IVS.
    Woodson SA
    Nucleic Acids Res; 1992 Aug; 20(15):4027-32. PubMed ID: 1508687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons.
    Puttaraju M; Been MD
    Nucleic Acids Res; 1992 Oct; 20(20):5357-64. PubMed ID: 1279519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Association of a group I intron with its splice junction in 50S ribosomes: implications for intron toxicity.
    Nikolcheva T; Woodson SA
    RNA; 1997 Sep; 3(9):1016-27. PubMed ID: 9292500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Tetrahymena rRNA intron self-splices in E. coli: in vivo evidence for the importance of key base-paired regions of RNA for RNA enzyme function.
    Waring RB; Ray JA; Edwards SW; Scazzocchio C; Davies RW
    Cell; 1985 Feb; 40(2):371-80. PubMed ID: 3917861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reverse splicing of the Tetrahymena IVS: evidence for multiple reaction sites in the 23S rRNA.
    Roman J; Woodson SA
    RNA; 1995 Jul; 1(5):478-90. PubMed ID: 7489509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing.
    Moore MJ; Sharp PA
    Nature; 1993 Sep; 365(6444):364-8. PubMed ID: 8397340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Folding of RNA involves parallel pathways.
    Pan J; Thirumalai D; Woodson SA
    J Mol Biol; 1997 Oct; 273(1):7-13. PubMed ID: 9367740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of the Tetrahymena group I intron into bacterial rRNA by reverse splicing in vivo.
    Roman J; Woodson SA
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2134-9. PubMed ID: 9482851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core.
    Doherty EA; Doudna JA
    Biochemistry; 1997 Mar; 36(11):3159-69. PubMed ID: 9115992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional folding of Tetrahymena thermophila rRNA IVS sequence: a proposal.
    Benedetti G; Morosetti S
    J Biomol Struct Dyn; 1991 Apr; 8(5):1045-55. PubMed ID: 1715170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self-splicing.
    Flor PJ; Flanegan JB; Cech TR
    EMBO J; 1989 Nov; 8(11):3391-9. PubMed ID: 2684642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 5' exon requirement for self-splicing of the Tetrahymena thermophila pre-ribosomal RNA and identification of a cryptic 5' splice site in the 3' exon.
    Price JV; Engberg J; Cech TR
    J Mol Biol; 1987 Jul; 196(1):49-60. PubMed ID: 2443717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-splicing of the group I intron from Anabaena pre-tRNA: requirement for base-pairing of the exons in the anticodon stem.
    Zaug AJ; McEvoy MM; Cech TR
    Biochemistry; 1993 Aug; 32(31):7946-53. PubMed ID: 8347600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-directed mutagenesis of core sequence elements 9R', 9L, 9R, and 2 in self-splicing Tetrahymena pre-rRNA.
    Williamson CL; Tierney WM; Kerker BJ; Burke JM
    J Biol Chem; 1987 Oct; 262(30):14672-82. PubMed ID: 3667597
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of recognition of the 5' splice site in self-splicing group I introns.
    Garriga G; Lambowitz AM; Inoue T; Cech TR
    Nature; 1986 Jul 3-9; 322(6074):86-9. PubMed ID: 3636598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The conserved terminal guanosine of a group I intron can help prevent reopening of the ligated exons.
    Suh E; Waring RB
    J Mol Biol; 1993 Jul; 232(2):375-85. PubMed ID: 7688426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans.
    Sargueil B; Tanner NK
    J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway.
    Russell R; Herschlag D
    J Mol Biol; 2001 May; 308(5):839-51. PubMed ID: 11352576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A horizontally acquired group II intron in the chloroplast psbA gene of a psychrophilic Chlamydomonas: in vitro self-splicing and genetic evidence for maturase activity.
    Odom OW; Shenkenberg DL; Garcia JA; Herrin DL
    RNA; 2004 Jul; 10(7):1097-107. PubMed ID: 15208445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.